BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 28467907)

  • 1. The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is Independent of Visual Inputs.
    Pietri T; Romano SA; Pérez-Schuster V; Boulanger-Weill J; Candat V; Sumbre G
    Cell Rep; 2017 May; 19(5):939-948. PubMed ID: 28467907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principles of Functional Circuit Connectivity: Insights From Spontaneous Activity in the Zebrafish Optic Tectum.
    Marachlian E; Avitan L; Goodhill GJ; Sumbre G
    Front Neural Circuits; 2018; 12():46. PubMed ID: 29977193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous neuronal network dynamics reveal circuit's functional adaptations for behavior.
    Romano SA; Pietri T; Pérez-Schuster V; Jouary A; Haudrechy M; Sumbre G
    Neuron; 2015 Mar; 85(5):1070-85. PubMed ID: 25704948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous Activity in the Zebrafish Tectum Reorganizes over Development and Is Influenced by Visual Experience.
    Avitan L; Pujic Z; Mölter J; Van De Poll M; Sun B; Teng H; Amor R; Scott EK; Goodhill GJ
    Curr Biol; 2017 Aug; 27(16):2407-2419.e4. PubMed ID: 28781054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional imaging reveals rapid development of visual response properties in the zebrafish tectum.
    Niell CM; Smith SJ
    Neuron; 2005 Mar; 45(6):941-51. PubMed ID: 15797554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles.
    Gambrill AC; Faulkner RL; Cline HT
    J Neurophysiol; 2018 May; 119(5):1947-1961. PubMed ID: 29442555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual Experience Facilitates BDNF-Dependent Adaptive Recruitment of New Neurons in the Postembryonic Optic Tectum.
    Hall ZJ; Tropepe V
    J Neurosci; 2018 Feb; 38(8):2000-2014. PubMed ID: 29363581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey.
    Förster D; Helmbrecht TO; Mearns DS; Jordan L; Mokayes N; Baier H
    Elife; 2020 Oct; 9():. PubMed ID: 33044168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal profile of synaptic activation produced by the electrical and visual stimulation of retinal inputs to the optic tectum: a current source density analysis in the pigeon (Columba livia).
    Letelier JC; Mpodozis J; Marin G; Morales D; Rozas C; Madrid C; Velasco M
    Eur J Neurosci; 2000 Jan; 12(1):47-57. PubMed ID: 10651859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Input from torus longitudinalis drives binocularity and spatial summation in zebrafish optic tectum.
    Tesmer AL; Fields NP; Robles E
    BMC Biol; 2022 Jan; 20(1):24. PubMed ID: 35073895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of input specificity of ltp during development of retinotectal connections in vivo.
    Tao HW; Zhang LI; Engert F; Poo M
    Neuron; 2001 Aug; 31(4):569-80. PubMed ID: 11545716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual experience-dependent maturation of correlated neuronal activity patterns in a developing visual system.
    Xu H; Khakhalin AS; Nurmikko AV; Aizenman CD
    J Neurosci; 2011 Jun; 31(22):8025-36. PubMed ID: 21632924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual input induces long-term potentiation of developing retinotectal synapses.
    Zhang LI; Tao HW; Poo M
    Nat Neurosci; 2000 Jul; 3(7):708-15. PubMed ID: 10862704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the activity-deprived zebrafish mutant macho reveals an essential requirement of neuronal activity for the development of a fine-grained visuotopic map.
    Gnuegge L; Schmid S; Neuhauss SC
    J Neurosci; 2001 May; 21(10):3542-8. PubMed ID: 11331383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of radial glial motility by visual experience.
    Tremblay M; Fugère V; Tsui J; Schohl A; Tavakoli A; Travençolo BA; Costa Lda F; Ruthazer ES
    J Neurosci; 2009 Nov; 29(45):14066-76. PubMed ID: 19906955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual processing of the zebrafish optic tectum before and after optic nerve damage.
    McDowell AL; Dixon LJ; Houchins JD; Bilotta J
    Vis Neurosci; 2004; 21(2):97-106. PubMed ID: 15259561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographic wiring of the retinotectal connection in zebrafish.
    Kita EM; Scott EK; Goodhill GJ
    Dev Neurobiol; 2015 Jun; 75(6):542-56. PubMed ID: 25492632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversal and stabilization of synaptic modifications in a developing visual system.
    Zhou Q; Tao HW; Poo MM
    Science; 2003 Jun; 300(5627):1953-7. PubMed ID: 12817152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of object size in retinotectal microcircuits.
    Preuss SJ; Trivedi CA; vom Berg-Maurer CM; Ryu S; Bollmann JH
    Curr Biol; 2014 Oct; 24(20):2376-85. PubMed ID: 25242030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.