BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28468368)

  • 1. Size and distance dependent fluorescence enhancement of nanoporous gold.
    Chen C; Zhang L; Yang M; Tao C; Han Z; Chen B; Zeng H
    Opt Express; 2017 May; 25(9):9901-9910. PubMed ID: 28468368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large enhancement of quantum dot fluorescence by highly scalable nanoporous gold.
    Zhang L; Song Y; Fujita T; Zhang Y; Chen M; Wang TH
    Adv Mater; 2014 Feb; 26(8):1289-94. PubMed ID: 24339211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silica Shell Thickness-Dependent Fluorescence Properties of SiO
    Hahm E; Jo A; Lee SH; Kang H; Pham XH; Jun BH
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distance-Dependent Fluorescence Resonance Energy Transfer Enhancement on Nanoporous Gold.
    Cui L; Zhang L; Zeng H
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant enhancement of fluorescence resonance energy transfer based on nanoporous gold with small amount of residual silver.
    Cui L; Zhang L; Li Z; Jing Z; Huang L; Zeng H
    Nanotechnology; 2024 Feb; 35(19):. PubMed ID: 38241734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning Localized Surface Plasmon Resonance of Nanoporous Gold with a Silica Shell for Surface Enhanced Raman Scattering.
    Li W; Ma C; Zhang L; Chen B; Chen L; Zeng H
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30759881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailored nanoporous gold for ultrahigh fluorescence enhancement.
    Lang XY; Guan PF; Fujita T; Chen MW
    Phys Chem Chem Phys; 2011 Mar; 13(9):3795-9. PubMed ID: 21203619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor.
    Kassu A; Farley C; Sharma A; Kim W; Guo J
    Sensors (Basel); 2015 Nov; 15(12):29924-37. PubMed ID: 26633402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Approach to Fluorescence Enhancement of Mesoporous Silica-Coated Gold Nanorods for Highly Sensitive Influenza A Virus Detection Using Lateral Flow Immunosensor.
    Hong D; Jo EJ; Bang D; Jung C; Lee YE; Noh YS; Shin MG; Kim MG
    ACS Nano; 2023 Sep; 17(17):16607-16619. PubMed ID: 37595106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-enhancement of fluorescence and singlet oxygen generation by silica-coated gold nanorods core-shell nanoparticle.
    Ke X; Wang D; Chen C; Yang A; Han Y; Ren L; Li D; Wang H
    Nanoscale Res Lett; 2014 Dec; 9(1):2492. PubMed ID: 26088999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of stratified nanoporous gold for enhanced biosensing.
    Qiu H; Zou F
    Biosens Bioelectron; 2012 May; 35(1):349-354. PubMed ID: 22494542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods.
    Abadeer NS; Brennan MR; Wilson WL; Murphy CJ
    ACS Nano; 2014 Aug; 8(8):8392-406. PubMed ID: 25062430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distance-Dependent Plasmon-Enhanced Fluorescence of Submonolayer Rhodamine 6G by Gold Nanoparticles.
    Bian Y; Liu S; Zhang Y; Liu Y; Yang X; Lou S; Wu E; Wu B; Zhang X; Jin Q
    Nanoscale Res Lett; 2021 May; 16(1):90. PubMed ID: 34021820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-enhanced fluorescence of carbon nanotubes.
    Hong G; Tabakman SM; Welsher K; Wang H; Wang X; Dai H
    J Am Chem Soc; 2010 Nov; 132(45):15920-3. PubMed ID: 20979398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyelectrolyte Layer-by-Layer Assembly To Control the Distance between Fluorophores and Plasmonic Nanostructures.
    Ray K; Badugu R; Lakowicz JR
    Chem Mater; 2007 Nov; 19(24):5902-5909. PubMed ID: 19714227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots.
    Zhao F; Zeng J; Parvez Arnob MM; Sun P; Qi J; Motwani P; Gheewala M; Li CH; Paterson A; Strych U; Raja B; Willson RC; Wolfe JC; Lee TR; Shih WC
    Nanoscale; 2014 Jul; 6(14):8199-207. PubMed ID: 24926835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoporous Gold Nanoparticles and Au/Al
    Rao W; Wang D; Kups T; Baradács E; Parditka B; Erdélyi Z; Schaaf P
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6273-6281. PubMed ID: 28145115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-Assistant Nanoporous Gold for Surface-Enhanced Raman Scattering.
    Jing Z; Zhang L; Xu X; Zhu S; Zeng H
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Single-Particle Analysis of Metal-Enhanced Fluorescence in Free Solution Using Ag@SiO
    Yan Y; Meng L; Zhang W; Zheng Y; Wang S; Ren B; Yang Z; Yan X
    ACS Sens; 2017 Sep; 2(9):1369-1376. PubMed ID: 28836759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distance and wavelength dependent quenching of molecular fluorescence by Au@SiO2 core-shell nanoparticles.
    Reineck P; Gómez D; Ng SH; Karg M; Bell T; Mulvaney P; Bach U
    ACS Nano; 2013 Aug; 7(8):6636-48. PubMed ID: 23713513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.