These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Tailoring the plasmon-induced transparency resonances in terahertz metamaterials. Liu M; Tian Z; Zhang X; Gu J; Ouyang C; Han J; Zhang W Opt Express; 2017 Aug; 25(17):19844-19855. PubMed ID: 29041671 [TBL] [Abstract][Full Text] [Related]
3. Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings. Wan M; Song Y; Zhang L; Zhou F Opt Express; 2015 Oct; 23(21):27361-8. PubMed ID: 26480398 [TBL] [Abstract][Full Text] [Related]
4. Manipulating the plasmon-induced transparency in terahertz metamaterials. Li Z; Ma Y; Huang R; Singh R; Gu J; Tian Z; Han J; Zhang W Opt Express; 2011 Apr; 19(9):8912-9. PubMed ID: 21643144 [TBL] [Abstract][Full Text] [Related]
5. Coherently controllable terahertz plasmon-induced transparency using a coupled Fano-Lorentzian metasurface. Zhao Z; Gu Z; Ako RT; Zhao H; Sriram S Opt Express; 2020 May; 28(10):15573-15586. PubMed ID: 32403582 [TBL] [Abstract][Full Text] [Related]
6. Dual-Spectral Plasmon-Induced Transparent Terahertz Metamaterial with Independently Tunable Amplitude and Frequency. Wu T; Wang G; Jia Y; Shao Y; Chen C; Han J; Gao Y; Gao Y Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835641 [TBL] [Abstract][Full Text] [Related]
7. Active control of broadband plasmon-induced transparency in a terahertz hybrid metal-graphene metamaterial. Zhang Z; Yang J; He X; Han Y; Zhang J; Huang J; Chen D; Xu S RSC Adv; 2018 Aug; 8(49):27746-27753. PubMed ID: 35542740 [TBL] [Abstract][Full Text] [Related]
8. Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface. Wang X; Meng H; Deng S; Lao C; Wei Z; Wang F; Tan C; Huang X Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30845741 [TBL] [Abstract][Full Text] [Related]
9. Independently tunable electromagnetically induced transparency effect and dispersion in a multi-band terahertz metamaterial. Sarkar R; Ghindani D; Devi KM; Prabhu SS; Ahmad A; Kumar G Sci Rep; 2019 Dec; 9(1):18068. PubMed ID: 31792270 [TBL] [Abstract][Full Text] [Related]
10. Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial. Ling Y; Huang L; Hong W; Liu T; Luan J; Liu W; Lai J; Li H Nanoscale; 2018 Nov; 10(41):19517-19523. PubMed ID: 30320322 [TBL] [Abstract][Full Text] [Related]
11. Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule. Zhao Z; Zheng X; Peng W; Zhang J; Zhao H; Luo Z; Shi W Opt Express; 2017 Oct; 25(20):24410-24424. PubMed ID: 29041386 [TBL] [Abstract][Full Text] [Related]
12. Broadband plasmon induced transparency in terahertz metamaterials. Zhu Z; Yang X; Gu J; Jiang J; Yue W; Tian Z; Tonouchi M; Han J; Zhang W Nanotechnology; 2013 May; 24(21):214003. PubMed ID: 23618809 [TBL] [Abstract][Full Text] [Related]
13. Dynamically controllable multi-switch and slow light based on a pyramid-shaped monolayer graphene metamaterial. Xiong C; Chao L; Zeng B; Wu K; Li M; Ruan B; Zhang B; Gao E; Li H Phys Chem Chem Phys; 2021 Feb; 23(6):3949-3962. PubMed ID: 33544099 [TBL] [Abstract][Full Text] [Related]
14. Triple plasmon-induced transparency and optical switch desensitized to polarized light based on a mono-layer metamaterial. Liu Z; Zhang X; Zhou F; Luo X; Zhang Z; Qin Y; Zhuo S; Gao E; Li H; Yi Z Opt Express; 2021 Apr; 29(9):13949-13959. PubMed ID: 33985121 [TBL] [Abstract][Full Text] [Related]
15. Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate. Han X; Wang T; Li X; Xiao S; Zhu Y Opt Express; 2015 Dec; 23(25):31945-55. PubMed ID: 26698986 [TBL] [Abstract][Full Text] [Related]
16. Multiband transparency effect induced by toroidal excitation in a strongly coupled planar terahertz metamaterial. Bhattacharya A; Sarkar R; Sharma NK; Bhowmik BK; Ahmad A; Kumar G Sci Rep; 2021 Sep; 11(1):19186. PubMed ID: 34584141 [TBL] [Abstract][Full Text] [Related]
17. Numerical and Theoretical Study of Tunable Plasmonically Induced Transparency Effect Based on Bright-Dark Mode Coupling in Graphene Metasurface. Ma Q; Dai J; Luo A; Hong W Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32013078 [TBL] [Abstract][Full Text] [Related]
18. A carbon nanotube metamaterial sensor showing slow light properties based on double plasmon-induced transparency. Pan Y; Chen F; Li Y; Yang W; Sun L; Yi Z Phys Chem Chem Phys; 2024 Jun; 26(22):16096-16106. PubMed ID: 38780318 [TBL] [Abstract][Full Text] [Related]
19. Active polarization-independent plasmon-induced transparency metasurface with suppressed magnetic attenuation. Wang J; Tan P; Li S; Wang G; Guo W; Zhou Z; Tian H Opt Express; 2021 May; 29(10):15541-15550. PubMed ID: 33985252 [TBL] [Abstract][Full Text] [Related]
20. Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials. Ren K; Zhang Y; Ren X; He Y; Han Q Front Optoelectron; 2021 Jun; 14(2):221-228. PubMed ID: 36637661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]