BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 28468611)

  • 21. Karyotypes in 90 human gliomas.
    Thiel G; Losanowa T; Kintzel D; Nisch G; Martin H; Vorpahl K; Witkowski R
    Cancer Genet Cytogenet; 1992 Feb; 58(2):109-20. PubMed ID: 1551072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. miR-15a and miR-24-1 as putative prognostic microRNA signatures for pediatric pilocytic astrocytomas and ependymomas.
    Braoudaki M; Lambrou GI; Giannikou K; Papadodima SA; Lykoudi A; Stefanaki K; Sfakianos G; Kolialexi A; Tzortzatou-Stathopoulou F; Tzetis M; Kitsiou-Tzeli S; Kanavakis E
    Tumour Biol; 2016 Jul; 37(7):9887-97. PubMed ID: 26813564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pediatric glial tumors.
    Cohen KJ; Broniscer A; Glod J
    Curr Treat Options Oncol; 2001 Dec; 2(6):529-36. PubMed ID: 12057098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frequent FGFR1 hotspot alterations in driver-unknown low-grade glioma and mixed neuronal-glial tumors.
    Engelhardt S; Behling F; Beschorner R; Eckert F; Kohlhof P; Tatagiba M; Tabatabai G; Schuhmann MU; Ebinger M; Schittenhelm J
    J Cancer Res Clin Oncol; 2022 Apr; 148(4):857-866. PubMed ID: 35018490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection, Characterization, and Inhibition of FGFR-TACC Fusions in IDH Wild-type Glioma.
    Di Stefano AL; Fucci A; Frattini V; Labussiere M; Mokhtari K; Zoppoli P; Marie Y; Bruno A; Boisselier B; Giry M; Savatovsky J; Touat M; Belaid H; Kamoun A; Idbaih A; Houillier C; Luo FR; Soria JC; Tabernero J; Eoli M; Paterra R; Yip S; Petrecca K; Chan JA; Finocchiaro G; Lasorella A; Sanson M; Iavarone A
    Clin Cancer Res; 2015 Jul; 21(14):3307-17. PubMed ID: 25609060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytogenetic and loss of heterozygosity studies in ependymomas, pilocytic astrocytomas, and oligodendrogliomas.
    Ransom DT; Ritland SR; Kimmel DW; Moertel CA; Dahl RJ; Scheithauer BW; Kelly PJ; Jenkins RB
    Genes Chromosomes Cancer; 1992 Nov; 5(4):348-56. PubMed ID: 1283324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular characterization of disseminated pilocytic astrocytomas.
    Gessi M; Engels AC; Lambert S; Rothämel T; von Hornstein S; Collins VP; Denkhaus D; Gnekow A; Pietsch T
    Neuropathol Appl Neurobiol; 2016 Apr; 42(3):273-8. PubMed ID: 26084390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FGFR1-4 RNA-Based Gene Alteration and Expression Analysis in Squamous Non-Small Cell Lung Cancer.
    Moes-Sosnowska J; Skupinska M; Lechowicz U; Szczepulska-Wojcik E; Skronska P; Rozy A; Stepniewska A; Langfort R; Rudzinski P; Orlowski T; Popiel D; Stanczak A; Wieczorek M; Chorostowska-Wynimko J
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Infiltrating gliomas with FGFR alterations: Histologic features, genetic alterations, and potential clinical implications.
    Dono A; El Achi H; Bundrant BE; Goli PS; Zhu P; Ozkizilkaya HI; Esquenazi Y; Ballester LY
    Cancer Biomark; 2023; 36(2):117-131. PubMed ID: 36530080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. OLIG2 is differentially expressed in pediatric astrocytic and in ependymal neoplasms.
    Otero JJ; Rowitch D; Vandenberg S
    J Neurooncol; 2011 Sep; 104(2):423-38. PubMed ID: 21193945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. KIAA0510, the 3'-untranslated region of the tenascin-R gene, and tenascin-R are overexpressed in pilocytic astrocytomas.
    El Ayachi I; Baeza N; Fernandez C; Colin C; Scavarda D; Pesheva P; Figarella-Branger D
    Neuropathol Appl Neurobiol; 2010 Aug; 36(5):399-410. PubMed ID: 20202125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma.
    Jones DT; Hutter B; Jäger N; Korshunov A; Kool M; Warnatz HJ; Zichner T; Lambert SR; Ryzhova M; Quang DA; Fontebasso AM; Stütz AM; Hutter S; Zuckermann M; Sturm D; Gronych J; Lasitschka B; Schmidt S; Seker-Cin H; Witt H; Sultan M; Ralser M; Northcott PA; Hovestadt V; Bender S; Pfaff E; Stark S; Faury D; Schwartzentruber J; Majewski J; Weber UD; Zapatka M; Raeder B; Schlesner M; Worth CL; Bartholomae CC; von Kalle C; Imbusch CD; Radomski S; Lawerenz C; van Sluis P; Koster J; Volckmann R; Versteeg R; Lehrach H; Monoranu C; Winkler B; Unterberg A; Herold-Mende C; Milde T; Kulozik AE; Ebinger M; Schuhmann MU; Cho YJ; Pomeroy SL; von Deimling A; Witt O; Taylor MD; Wolf S; Karajannis MA; Eberhart CG; Scheurlen W; Hasselblatt M; Ligon KL; Kieran MW; Korbel JO; Yaspo ML; Brors B; Felsberg J; Reifenberger G; Collins VP; Jabado N; Eils R; Lichter P; Pfister SM;
    Nat Genet; 2013 Aug; 45(8):927-32. PubMed ID: 23817572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fibroblast growth factor receptor (FGFR) alterations in squamous differentiated bladder cancer: a putative therapeutic target for a small subgroup.
    Baldia PH; Maurer A; Heide T; Rose M; Stoehr R; Hartmann A; Williams SV; Knowles MA; Knuechel R; Gaisa NT
    Oncotarget; 2016 Nov; 7(44):71429-71439. PubMed ID: 27669755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual activating FGFR1 mutations in pediatric pilomyxoid astrocytoma.
    Fomchenko EI; Reeves BC; Sullivan W; Marks AM; Huttner A; Kahle KT; Erson-Omay EZ
    Mol Genet Genomic Med; 2021 Feb; 9(2):e1597. PubMed ID: 33448156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential expression of the tumor suppressor A-kinase anchor protein 12 in human diffuse and pilocytic astrocytomas is regulated by promoter methylation.
    Goeppert B; Schmidt CR; Geiselhart L; Dutruel C; Capper D; Renner M; Vogel MN; Zachskorn C; Zinke J; Campos B; Schmezer P; Popanda O; Wick W; Weller M; Meyermann R; Schittenhelm J; Harter PN; Simon P; Weichert W; Schirmacher P; Plass C; Mittelbronn M
    J Neuropathol Exp Neurol; 2013 Oct; 72(10):933-41. PubMed ID: 24042196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pilocytic astrocytoma of the optic pathway: a tumour deriving from radial glia cells with a specific gene signature.
    Tchoghandjian A; Fernandez C; Colin C; El Ayachi I; Voutsinos-Porche B; Fina F; Scavarda D; Piercecchi-Marti MD; Intagliata D; Ouafik L; Fraslon-Vanhulle C; Figarella-Branger D
    Brain; 2009 Jun; 132(Pt 6):1523-35. PubMed ID: 19336457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cortical ependymoma or monomorphous angiocentric glioma?
    Lum DJ; Halliday W; Watson M; Smith A; Law A
    Neuropathology; 2008 Feb; 28(1):81-6. PubMed ID: 18021197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FGFR gene alterations in lung squamous cell carcinoma are potential targets for the multikinase inhibitor nintedanib.
    Hibi M; Kaneda H; Tanizaki J; Sakai K; Togashi Y; Terashima M; De Velasco MA; Fujita Y; Banno E; Nakamura Y; Takeda M; Ito A; Mitsudomi T; Nakagawa K; Okamoto I; Nishio K
    Cancer Sci; 2016 Nov; 107(11):1667-1676. PubMed ID: 27581340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromosome 1q gain and tenascin-C expression are candidate markers to define different risk groups in pediatric posterior fossa ependymoma.
    Araki A; Chocholous M; Gojo J; Dorfer C; Czech T; Heinzl H; Dieckmann K; Ambros IM; Ambros PF; Slavc I; Haberler C
    Acta Neuropathol Commun; 2016 Aug; 4(1):88. PubMed ID: 27550150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A place for precision medicine in bladder cancer: targeting the FGFRs.
    di Martino E; Tomlinson DC; Williams SV; Knowles MA
    Future Oncol; 2016 Oct; 12(19):2243-63. PubMed ID: 27381494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.