These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 28468753)

  • 1. Structure of the
    Beckert B; Abdelshahid M; Schäfer H; Steinchen W; Arenz S; Berninghausen O; Beckmann R; Bange G; Turgay K; Wilson DN
    EMBO J; 2017 Jul; 36(14):2061-2072. PubMed ID: 28468753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1.
    Beckert B; Turk M; Czech A; Berninghausen O; Beckmann R; Ignatova Z; Plitzko JM; Wilson DN
    Nat Microbiol; 2018 Oct; 3(10):1115-1121. PubMed ID: 30177741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus.
    Matzov D; Aibara S; Basu A; Zimmerman E; Bashan A; Yap MF; Amunts A; Yonath AE
    Nat Commun; 2017 Sep; 8(1):723. PubMed ID: 28959035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conservation of two distinct types of 100S ribosome in bacteria.
    Ueta M; Wada C; Daifuku T; Sako Y; Bessho Y; Kitamura A; Ohniwa RL; Morikawa K; Yoshida H; Kato T; Miyata T; Namba K; Wada A
    Genes Cells; 2013 Jul; 18(7):554-74. PubMed ID: 23663662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ribosome modulation factor (RMF) binding site on the 100S ribosome of Escherichia coli.
    Yoshida H; Maki Y; Kato H; Fujisawa H; Izutsu K; Wada C; Wada A
    J Biochem; 2002 Dec; 132(6):983-9. PubMed ID: 12473202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy.
    Franken LE; Oostergetel GT; Pijning T; Puri P; Arkhipova V; Boekema EJ; Poolman B; Guskov A
    Nat Commun; 2017 Sep; 8(1):722. PubMed ID: 28959045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryo-EM structure of the hibernating Thermus thermophilus 100S ribosome reveals a protein-mediated dimerization mechanism.
    Flygaard RK; Boegholm N; Yusupov M; Jenner LB
    Nat Commun; 2018 Oct; 9(1):4179. PubMed ID: 30301898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of HPF (hibernation promoting factor) in translational activity in Escherichia coli.
    Ueta M; Ohniwa RL; Yoshida H; Maki Y; Wada C; Wada A
    J Biochem; 2008 Mar; 143(3):425-33. PubMed ID: 18174192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures and dynamics of hibernating ribosomes from
    Khusainov I; Vicens Q; Ayupov R; Usachev K; Myasnikov A; Simonetti A; Validov S; Kieffer B; Yusupova G; Yusupov M; Hashem Y
    EMBO J; 2017 Jul; 36(14):2073-2087. PubMed ID: 28645916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Sites of Ribosome Modulation Factor (RMF) Involved in the Formation of 100S Ribosome.
    Yoshida H; Nakayama H; Maki Y; Ueta M; Wada C; Wada A
    Front Mol Biosci; 2021; 8():661691. PubMed ID: 34012979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosome Dimerization Protects the Small Subunit.
    Feaga HA; Kopylov M; Kim JK; Jovanovic M; Dworkin J
    J Bacteriol; 2020 Apr; 202(10):. PubMed ID: 32123037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hibernation promoting factor of Betaproteobacteria Comamonas testosteroni cannot induce 100S ribosome formation but stabilizes 70S ribosomal particles.
    Ueta M; Wada A; Wada C
    Genes Cells; 2024 Aug; 29(8):613-634. PubMed ID: 38937957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 100S ribosome: ribosomal hibernation induced by stress.
    Yoshida H; Wada A
    Wiley Interdiscip Rev RNA; 2014; 5(5):723-32. PubMed ID: 24944100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis.
    Kline BC; McKay SL; Tang WW; Portnoy DA
    J Bacteriol; 2015 Feb; 197(3):581-91. PubMed ID: 25422304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activities of Escherichia coli ribosomes in IF3 and RMF change to prepare 100S ribosome formation on entering the stationary growth phase.
    Yoshida H; Ueta M; Maki Y; Sakai A; Wada A
    Genes Cells; 2009 Feb; 14(2):271-80. PubMed ID: 19170772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress response as implemented by hibernating ribosomes: a structural overview.
    Matzov D; Bashan A; Yap MF; Yonath A
    FEBS J; 2019 Sep; 286(18):3558-3565. PubMed ID: 31230411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of 100S ribosomes in Staphylococcus aureus by the hibernation promoting factor homolog SaHPF.
    Ueta M; Wada C; Wada A
    Genes Cells; 2010 Jan; 15(1):43-58. PubMed ID: 20015224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How hibernation factors RMF, HPF, and YfiA turn off protein synthesis.
    Polikanov YS; Blaha GM; Steitz TA
    Science; 2012 May; 336(6083):915-8. PubMed ID: 22605777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli.
    Ueta M; Yoshida H; Wada C; Baba T; Mori H; Wada A
    Genes Cells; 2005 Dec; 10(12):1103-12. PubMed ID: 16324148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal and Nutritional Regulation of Ribosome Hibernation in Staphylococcus aureus.
    Basu A; Shields KE; Eickhoff CS; Hoft DF; Yap MN
    J Bacteriol; 2018 Dec; 200(24):. PubMed ID: 30297357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.