These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28468814)

  • 1. Metabolic cost of human hopping.
    Gutmann AK; Bertram JEA
    J Exp Biol; 2017 May; 220(Pt 9):1654-1662. PubMed ID: 28468814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the 'cost of generating force' hypothesis across frequency in human running and hopping.
    Allen SP; Beck ON; Grabowski AM
    J Exp Biol; 2022 Sep; 225(18):. PubMed ID: 36111420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus).
    Kram R; Dawson TJ
    Comp Biochem Physiol B Biochem Mol Biol; 1998 May; 120(1):41-9. PubMed ID: 9787777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics of running: a new perspective.
    Kram R; Taylor CR
    Nature; 1990 Jul; 346(6281):265-7. PubMed ID: 2374590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The apparently contradictory energetics of hopping and running: the counter-intuitive effect of constraints resolves the paradox.
    Gutmann AK; Bertram JE
    J Exp Biol; 2017 Jan; 220(Pt 2):167-170. PubMed ID: 27875261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics and mechanics of terrestrial locomotion.
    Taylor CR; Heglund NC
    Annu Rev Physiol; 1982; 44():97-107. PubMed ID: 7041812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy turnover in mammalian skeletal muscle in contractions mimicking locomotion: effects of stimulus pattern on work, impulse and energetic cost and efficiency.
    Curtin NA; Woledge RC; West TG; Goodwin D; Piercy RJ; Wilson AM
    J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31221738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leg exoskeleton reduces the metabolic cost of human hopping.
    Grabowski AM; Herr HM
    J Appl Physiol (1985); 2009 Sep; 107(3):670-8. PubMed ID: 19423835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The high energetic cost of rapid force development in muscle.
    van der Zee TJ; Kuo AD
    J Exp Biol; 2021 May; 224(9):. PubMed ID: 33707194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetic costs of producing muscle work and force in a cyclical human bouncing task.
    Dean JC; Kuo AD
    J Appl Physiol (1985); 2011 Apr; 110(4):873-80. PubMed ID: 21212245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle mechanical advantage of human walking and running: implications for energy cost.
    Biewener AA; Farley CT; Roberts TJ; Temaner M
    J Appl Physiol (1985); 2004 Dec; 97(6):2266-74. PubMed ID: 15258124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting elasticity: Modeling the influence of neural control on mechanics and energetics of ankle muscle-tendons during human hopping.
    Robertson BD; Sawicki GS
    J Theor Biol; 2014 Jul; 353():121-32. PubMed ID: 24641822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical consequences of scaling.
    Biewener AA
    J Exp Biol; 2005 May; 208(Pt 9):1665-76. PubMed ID: 15855398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments.
    Griffin TM; Roberts TJ; Kram R
    J Appl Physiol (1985); 2003 Jul; 95(1):172-83. PubMed ID: 12794096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective.
    Biewener AA; Roberts TJ
    Exerc Sport Sci Rev; 2000 Jul; 28(3):99-107. PubMed ID: 10916700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking muscle mechanics to the metabolic cost of human hopping.
    Jessup LN; Kelly LA; Cresswell AG; Lichtwark GA
    J Exp Biol; 2023 Jun; 226(12):. PubMed ID: 37227005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamic limits of hop height: Biological actuator capabilities and mechanical requirements of task produce incongruity between one- and two-legged performance.
    Gutmann AK; Bertram JE
    Proc Inst Mech Eng H; 2016 Mar; 230(3):191-200. PubMed ID: 26733472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits.
    Farley CT; Blickhan R; Saito J; Taylor CR
    J Appl Physiol (1985); 1991 Dec; 71(6):2127-32. PubMed ID: 1778902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Animal galloping and human hopping: an energetics and biomechanics laboratory exercise.
    Lindstedt SL; Mineo PM; Schaeffer PJ
    Adv Physiol Educ; 2013 Dec; 37(4):377-83. PubMed ID: 24292916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo mechanical properties of the human Achilles tendon during one-legged hopping.
    Lichtwark GA; Wilson AM
    J Exp Biol; 2005 Dec; 208(Pt 24):4715-25. PubMed ID: 16326953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.