BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

724 related articles for article (PubMed ID: 28468994)

  • 1. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury.
    Urbin MA; Ozdemir RA; Tazoe T; Perez MA
    J Neurophysiol; 2017 Oct; 118(4):2171-2180. PubMed ID: 28468994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury.
    Bunday KL; Urbin MA; Perez MA
    Brain Stimul; 2018; 11(5):1083-1092. PubMed ID: 29848448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased paired stimuli enhance corticospinal-motoneuronal plasticity in humans with spinal cord injury.
    Grover FM; Chen B; Perez MA
    J Neurophysiol; 2023 Jun; 129(6):1414-1422. PubMed ID: 36752493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute intermittent hypoxia boosts spinal plasticity in humans with tetraplegia.
    Christiansen L; Chen B; Lei Y; Urbin MA; Richardson MSA; Oudega M; Sandhu M; Rymer WZ; Trumbower RD; Mitchell GS; Perez MA
    Exp Neurol; 2021 Jan; 335():113483. PubMed ID: 32987000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury.
    Jo HJ; Perez MA
    Brain; 2020 May; 143(5):1368-1382. PubMed ID: 32355959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of N-methyl-d-aspartate receptors in plasticity induced by paired corticospinal-motoneuronal stimulation in humans.
    Dongés SC; D'Amico JM; Butler JE; Taylor JL
    J Neurophysiol; 2018 Feb; 119(2):652-661. PubMed ID: 29118196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway.
    D'Amico JM; Dongés SC; Taylor JL
    J Neurophysiol; 2020 May; 123(5):1969-1978. PubMed ID: 32292098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paired corticospinal-motoneuronal stimulation increases maximal voluntary activation of human adductor pollicis.
    D'Amico JM; Dongés SC; Taylor JL
    J Neurophysiol; 2018 Jan; 119(1):369-376. PubMed ID: 29046429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of paired corticospinal-motoneuronal stimulation on maximal voluntary elbow flexion in cervical spinal cord injury: an experimental study.
    Dongés SC; Boswell-Ruys CL; Butler JE; Taylor JL
    Spinal Cord; 2019 Sep; 57(9):796-804. PubMed ID: 31086274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. More conditioning stimuli enhance synaptic plasticity in the human spinal cord.
    Fitzpatrick SC; Luu BL; Butler JE; Taylor JL
    Clin Neurophysiol; 2016 Jan; 127(1):724-731. PubMed ID: 25912336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operant conditioning of the tibialis anterior motor evoked potential in people with and without chronic incomplete spinal cord injury.
    Thompson AK; Cote RH; Sniffen JM; Brangaccio JA
    J Neurophysiol; 2018 Dec; 120(6):2745-2760. PubMed ID: 30207863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of F-response in defining interstimulus intervals appropriate for LTP-like plasticity induction in lower limb spinal paired associative stimulation.
    Shulga A; Lioumis P; Kirveskari E; Savolainen S; Mäkelä JP; Ylinen A
    J Neurosci Methods; 2015 Mar; 242():112-7. PubMed ID: 25597909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury.
    Roy FD; Yang JF; Gorassini MA
    J Neurophysiol; 2010 Apr; 103(4):2222-33. PubMed ID: 20181733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel cortical target to enhance hand motor output in humans with spinal cord injury.
    Long J; Federico P; Perez MA
    Brain; 2017 Jun; 140(6):1619-1632. PubMed ID: 28549131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of coil orientation on motor-evoked potentials in humans with tetraplegia.
    Jo HJ; Di Lazzaro V; Perez MA
    J Physiol; 2018 Oct; 596(20):4909-4921. PubMed ID: 29923194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multisite Hebbian Plasticity Restores Function in Humans with Spinal Cord Injury.
    Jo HJ; Kizziar E; Sangari S; Chen D; Kessler A; Kim K; Anschel A; Heinemann AW; Mensh BD; Awadalla S; Lieber RL; Oudega M; Perez MA
    Ann Neurol; 2023 Jun; 93(6):1198-1213. PubMed ID: 36843340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurophysiological examination of the corticospinal system and voluntary motor control in motor-incomplete human spinal cord injury.
    McKay WB; Lee DC; Lim HK; Holmes SA; Sherwood AM
    Exp Brain Res; 2005 Jun; 163(3):379-87. PubMed ID: 15616810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operant conditioning of the motor-evoked potential and locomotion in people with and without chronic incomplete spinal cord injury.
    Thompson AK; Fiorenza G; Smyth L; Favale B; Brangaccio J; Sniffen J
    J Neurophysiol; 2019 Mar; 121(3):853-866. PubMed ID: 30625010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in motor-evoked potential latency during grasping after tetraplegia.
    Jo HJ; Perez MA
    J Neurophysiol; 2019 Oct; 122(4):1675-1684. PubMed ID: 30673355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury.
    Bunday KL; Perez MA
    J Neurophysiol; 2012 May; 107(10):2901-11. PubMed ID: 22357796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.