These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 28469559)
61. Cytoskeletal changes in actin and microtubules underlie the developing surface mechanical properties of sensory and supporting cells in the mouse cochlea. Szarama KB; Gavara N; Petralia RS; Kelley MW; Chadwick RS Development; 2012 Jun; 139(12):2187-97. PubMed ID: 22573615 [TBL] [Abstract][Full Text] [Related]
62. Correlating STED and synchrotron XRF nano-imaging unveils cosegregation of metals and cytoskeleton proteins in dendrites. Domart F; Cloetens P; Roudeau S; Carmona A; Verdier E; Choquet D; Ortega R Elife; 2020 Dec; 9():. PubMed ID: 33289481 [TBL] [Abstract][Full Text] [Related]
63. Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Wu HW; Kuhn T; Moy VT Scanning; 1998 Aug; 20(5):389-97. PubMed ID: 9737018 [TBL] [Abstract][Full Text] [Related]
64. Atomic force microscopy as an advanced tool in neuroscience. Jembrek MJ; Šimić G; Hof PR; Šegota S Transl Neurosci; 2015; 6(1):117-130. PubMed ID: 28123795 [TBL] [Abstract][Full Text] [Related]
65. Ultralow Laser Power Three-Dimensional Superresolution Microscopy Based on Digitally Enhanced STED. Shen X; Wang L; Li W; Wang H; Zhou H; Zhu Y; Yan W; Qu J Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884342 [TBL] [Abstract][Full Text] [Related]
66. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy. Calzado-Martín A; Encinar M; Tamayo J; Calleja M; San Paulo A ACS Nano; 2016 Mar; 10(3):3365-74. PubMed ID: 26901115 [TBL] [Abstract][Full Text] [Related]
67. APC nuclear membrane association and microtubule polarity. Collin L; Schlessinger K; Hall A Biol Cell; 2008 Apr; 100(4):243-52. PubMed ID: 18042042 [TBL] [Abstract][Full Text] [Related]
68. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods. Tam J; Merino D J Neurochem; 2015 Nov; 135(4):643-58. PubMed ID: 26222552 [TBL] [Abstract][Full Text] [Related]
69. Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens. Jahr W; Velicky P; Danzl JG Methods; 2020 Mar; 174():27-41. PubMed ID: 31344404 [TBL] [Abstract][Full Text] [Related]
70. An engineering insight into the relationship of selective cytoskeletal impairment and biomechanics of HeLa cells. Borin D; Puzzi L; Martinelli V; Cibinel M; Lapasin R; Sbaizero O Micron; 2017 Nov; 102():88-96. PubMed ID: 28917581 [TBL] [Abstract][Full Text] [Related]
71. [Comparison and progress review of various super-resolution fluorescence imaging techniques]. Chen J; Liu W; Xu Z Se Pu; 2021 Oct; 39(10):1055-1064. PubMed ID: 34505427 [TBL] [Abstract][Full Text] [Related]
72. A simple empirical algorithm for optimising depletion power and resolution for dye and system specific STED imaging. Combs CA; Sackett DL; Knutson JR J Microsc; 2019 Jun; 274(3):168-176. PubMed ID: 31012103 [TBL] [Abstract][Full Text] [Related]
73. STED microscopy and its applications: new insights into cellular processes on the nanoscale. Müller T; Schumann C; Kraegeloh A Chemphyschem; 2012 Jun; 13(8):1986-2000. PubMed ID: 22374829 [TBL] [Abstract][Full Text] [Related]
74. Cytoskeletal Actin Structure in Osteosarcoma Cells Determines Metastatic Phenotype via Regulating Cell Stiffness, Migration, and Transmigration. Kita K; Asanuma K; Okamoto T; Kawamoto E; Nakamura K; Hagi T; Nakamura T; Shimaoka M; Sudo A Curr Issues Mol Biol; 2021 Sep; 43(3):1255-1266. PubMed ID: 34698103 [TBL] [Abstract][Full Text] [Related]
75. Probing in vivo dynamics of mitochondria and cortical actin networks using high-speed atomic force/fluorescence microscopy. Yoshida A; Sakai N; Uekusa Y; Deguchi K; Gilmore JL; Kumeta M; Ito S; Takeyasu K Genes Cells; 2015 Feb; 20(2):85-94. PubMed ID: 25440894 [TBL] [Abstract][Full Text] [Related]
76. Endothelial permeability is controlled by spatially defined cytoskeletal mechanics: atomic force microscopy force mapping of pulmonary endothelial monolayer. Birukova AA; Arce FT; Moldobaeva N; Dudek SM; Garcia JG; Lal R; Birukov KG Nanomedicine; 2009 Mar; 5(1):30-41. PubMed ID: 18824415 [TBL] [Abstract][Full Text] [Related]
77. Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Ludwig T; Kirmse R; Poole K; Schwarz US Pflugers Arch; 2008 Apr; 456(1):29-49. PubMed ID: 18058123 [TBL] [Abstract][Full Text] [Related]
78. Combining atomic force-fluorescence microscopy with a stretching device for analyzing mechanotransduction processes in living cells. Hecht E; Knittel P; Felder E; Dietl P; Mizaikoff B; Kranz C Analyst; 2012 Nov; 137(22):5208-14. PubMed ID: 22977882 [TBL] [Abstract][Full Text] [Related]
79. Architecture-driven quantitative nanoscopy maps cytoskeleton remodeling. Liu W; Yao Y; Meng J; Qian S; Han Y; Zhou L; Wang T; Chen Y; Chen L; Ye Z; Xu L; Zhang M; Qiu J; Han T; Liu X; Kuang C; Ding Z; Liu Z Proc Natl Acad Sci U S A; 2024 Oct; 121(42):e2410688121. PubMed ID: 39374388 [TBL] [Abstract][Full Text] [Related]
80. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. Raman A; Trigueros S; Cartagena A; Stevenson AP; Susilo M; Nauman E; Contera SA Nat Nanotechnol; 2011 Nov; 6(12):809-14. PubMed ID: 22081213 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]