These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 28469559)
81. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones. Biswas S; Kalil K J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405 [TBL] [Abstract][Full Text] [Related]
82. Sub-diffraction nano manipulation using STED AFM. Chacko JV; Canale C; Harke B; Diaspro A PLoS One; 2013; 8(6):e66608. PubMed ID: 23799123 [TBL] [Abstract][Full Text] [Related]
83. Cytoskeleton structure and dynamic behaviour: quick excursus from basic molecular mechanisms to some implications in cancer chemotherapy. Alberti C Eur Rev Med Pharmacol Sci; 2009; 13(1):13-21. PubMed ID: 19364082 [TBL] [Abstract][Full Text] [Related]
85. Dynamics of astrocyte adhesion as analyzed by a combination of atomic force microscopy and immuno-cytochemistry: the involvement of actin filaments and connexin 43 in the early stage of adhesion. Yamane Y; Shiga H; Asou H; Haga H; Kawabata K; Abe K; Ito E Arch Histol Cytol; 1999 Oct; 62(4):355-61. PubMed ID: 10596946 [TBL] [Abstract][Full Text] [Related]
86. A case study of the electrical properties of astrocytes by multimode AFM. Zhao W; Cheong LZ; Cui W; Xu S; Shen C J Microsc; 2019 Aug; 275(2):75-81. PubMed ID: 31074501 [TBL] [Abstract][Full Text] [Related]
87. The role of the cytoskeleton in cellular force generation in 2D and 3D environments. Kraning-Rush CM; Carey SP; Califano JP; Smith BN; Reinhart-King CA Phys Biol; 2011 Feb; 8(1):015009. PubMed ID: 21301071 [TBL] [Abstract][Full Text] [Related]
88. Atomic Force Microscopy Reveals the Dynamic Morphology of Fenestrations in Live Liver Sinusoidal Endothelial Cells. Zapotoczny B; Szafranska K; Owczarczyk K; Kus E; Chlopicki S; Szymonski M Sci Rep; 2017 Aug; 7(1):7994. PubMed ID: 28801568 [TBL] [Abstract][Full Text] [Related]
89. A multi-structural single cell model of force-induced interactions of cytoskeletal components. Barreto S; Clausen CH; Perrault CM; Fletcher DA; Lacroix D Biomaterials; 2013 Aug; 34(26):6119-26. PubMed ID: 23702149 [TBL] [Abstract][Full Text] [Related]
90. Resveratrol protects chondrocytes from apoptosis via altering the ultrastructural and biomechanical properties: an AFM study. Jin H; Liang Q; Chen T; Wang X PLoS One; 2014; 9(3):e91611. PubMed ID: 24632762 [TBL] [Abstract][Full Text] [Related]
91. Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy. Tang X; Zhang Y; Mao J; Wang Y; Zhang Z; Wang Z; Yang H Beilstein J Nanotechnol; 2022; 13():560-569. PubMed ID: 35860456 [TBL] [Abstract][Full Text] [Related]
92. Use of the unroofing technique for atomic force microscopic imaging of the intra-cellular cytoskeleton under aqueous conditions. Usukura J; Yoshimura A; Minakata S; Youn D; Ahn J; Cho SJ J Electron Microsc (Tokyo); 2012; 61(5):321-6. PubMed ID: 22872282 [TBL] [Abstract][Full Text] [Related]
93. Demonstration of correlative atomic force and transmission electron microscopy using actin cytoskeleton. Yamada Y; Konno H; Shimabukuro K Biophys Physicobiol; 2017; 14():111-117. PubMed ID: 28828286 [TBL] [Abstract][Full Text] [Related]
94. Migration of BEAS-2B cells enhanced by H1299 cell derived-exosomes. Wang S; Ju T; Wang J; Yang F; Qu K; Liu W; Wang Z Micron; 2021 Apr; 143():103001. PubMed ID: 33508546 [TBL] [Abstract][Full Text] [Related]
95. A high resolution view of the fly actin cytoskeleton lacking a functional WAVE complex. Zobel T; Bogdan S J Microsc; 2013 Sep; 251(3):224-31. PubMed ID: 23410210 [TBL] [Abstract][Full Text] [Related]
96. Fluorescent dyes and probes for super-resolution microscopy of microtubules and tracheoles in living cells and tissues. Lukinavičius G; Mitronova GY; Schnorrenberg S; Butkevich AN; Barthel H; Belov VN; Hell SW Chem Sci; 2018 Apr; 9(13):3324-3334. PubMed ID: 29780462 [TBL] [Abstract][Full Text] [Related]
97. Mapping stress inside living cells by atomic force microscopy in response to environmental stimuli. Wang H; Zhang H; Tamura R; Da B; Abdellatef SA; Watanabe I; Ishida N; Fujita D; Hanagata N; Nakagawa T; Nakanishi J Sci Technol Adv Mater; 2023; 24(1):2265434. PubMed ID: 37867575 [TBL] [Abstract][Full Text] [Related]
98. Superresolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth. Ishitsuka Y; Savage N; Li Y; Bergs A; Grün N; Kohler D; Donnelly R; Nienhaus GU; Fischer R; Takeshita N Sci Adv; 2015 Nov; 1(10):e1500947. PubMed ID: 26665168 [TBL] [Abstract][Full Text] [Related]
99. Advancing cellular insights: Super-resolution STORM imaging of cytoskeletal structures in human stem and cancer cells. Bharadwaj A; Kumar A; Padalumavunkal Mathew S; Mitra R; Bhattacharyya J; Jaganathan BG; Boruah BR Biochem Biophys Rep; 2024 Sep; 39():101798. PubMed ID: 39161577 [TBL] [Abstract][Full Text] [Related]
100. STORM without enzymatic oxygen scavenging for correlative atomic force and fluorescence superresolution microscopy. Hirvonen LM; Cox S Methods Appl Fluoresc; 2018 Jul; 6(4):045002. PubMed ID: 29956675 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]