These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 28469705)
1. Suppression of Smith RA; Cass CL; Mazaheri M; Sekhon RS; Heckwolf M; Kaeppler H; de Leon N; Mansfield SD; Kaeppler SM; Sedbrook JC; Karlen SD; Ralph J Biotechnol Biofuels; 2017; 10():109. PubMed ID: 28469705 [TBL] [Abstract][Full Text] [Related]
2. Manipulation of Lignin Monomer Composition Combined with the Introduction of Monolignol Conjugate Biosynthesis Leads to Synergistic Changes in Lignin Structure. Smith RA; Lu F; Muro-Villanueva F; Cusumano JC; Chapple C; Ralph J Plant Cell Physiol; 2022 Jun; 63(6):744-754. PubMed ID: 35275214 [TBL] [Abstract][Full Text] [Related]
3. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Anterola AM; Lewis NG Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514 [TBL] [Abstract][Full Text] [Related]
4. Stacking AsFMT overexpression with BdPMT loss of function enhances monolignol ferulate production in Brachypodium distachyon. Smith RA; Cass CL; Petrik DL; Padmakshan D; Ralph J; Sedbrook JC; Karlen SD Plant Biotechnol J; 2021 Sep; 19(9):1878-1886. PubMed ID: 33949064 [TBL] [Abstract][Full Text] [Related]
5. Structural Redesigning Arabidopsis Lignins into Alkali-Soluble Lignins through the Expression of p-Coumaroyl-CoA:Monolignol Transferase PMT. Sibout R; Le Bris P; Legée F; Cézard L; Renault H; Lapierre C Plant Physiol; 2016 Mar; 170(3):1358-66. PubMed ID: 26826222 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of a set of monocot BAHD monolignol transferases. Smith RA; Beebe ET; Bingman CA; Vander Meulen K; Eugene A; Steiner AJ; Karlen SD; Ralph J; Fox BG Plant Physiol; 2022 May; 189(1):37-48. PubMed ID: 35134228 [TBL] [Abstract][Full Text] [Related]
7. Enhancing monolignol ferulate conjugate levels in poplar lignin via OsFMT1. Unda F; de Vries L; Karlen SD; Rainbow J; Zhang C; Bartley LE; Kim H; Ralph J; Mansfield SD Biotechnol Biofuels Bioprod; 2024 Jul; 17(1):97. PubMed ID: 39003470 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of the plant feruloyl-coenzyme A monolignol transferase provides insights into the formation of monolignol ferulate conjugates. Liu X; Dai S; Zhou Y; Liu J; Li D; Zhang J; Zhu Y; Zhao Q; Feng Y; Zhang Y Biochem Biophys Res Commun; 2022 Feb; 594():8-14. PubMed ID: 35066379 [TBL] [Abstract][Full Text] [Related]
9. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability. Grabber JH; Schatz PF; Kim H; Lu F; Ralph J BMC Plant Biol; 2010 Jun; 10():114. PubMed ID: 20565789 [TBL] [Abstract][Full Text] [Related]
10. Monolignol ferulate conjugates are naturally incorporated into plant lignins. Karlen SD; Zhang C; Peck ML; Smith RA; Padmakshan D; Helmich KE; Free HC; Lee S; Smith BG; Lu F; Sedbrook JC; Sibout R; Grabber JH; Runge TM; Mysore KS; Harris PJ; Bartley LE; Ralph J Sci Adv; 2016 Oct; 2(10):e1600393. PubMed ID: 27757415 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. Ma QH J Exp Bot; 2007; 58(8):2011-21. PubMed ID: 17452751 [TBL] [Abstract][Full Text] [Related]
12. Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Wilkerson CG; Mansfield SD; Lu F; Withers S; Park JY; Karlen SD; Gonzales-Vigil E; Padmakshan D; Unda F; Rencoret J; Ralph J Science; 2014 Apr; 344(6179):90-3. PubMed ID: 24700858 [TBL] [Abstract][Full Text] [Related]
13. Clarification of cinnamoyl co-enzyme A reductase catalysis in monolignol biosynthesis of Aspen. Li L; Cheng X; Lu S; Nakatsubo T; Umezawa T; Chiang VL Plant Cell Physiol; 2005 Jul; 46(7):1073-82. PubMed ID: 15870094 [TBL] [Abstract][Full Text] [Related]
14. Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Mir Derikvand M; Sierra JB; Ruel K; Pollet B; Do CT; Thévenin J; Buffard D; Jouanin L; Lapierre C Planta; 2008 Apr; 227(5):943-56. PubMed ID: 18046574 [TBL] [Abstract][Full Text] [Related]
15. Characterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize: effects on lignification, fibre development, and global gene expression. Tamasloukht B; Wong Quai Lam MS; Martinez Y; Tozo K; Barbier O; Jourda C; Jauneau A; Borderies G; Balzergue S; Renou JP; Huguet S; Martinant JP; Tatout C; Lapierre C; Barrière Y; Goffner D; Pichon M J Exp Bot; 2011 Jul; 62(11):3837-48. PubMed ID: 21493812 [TBL] [Abstract][Full Text] [Related]
16. Reassessment of effects on lignification and vascular development in the irx4 Arabidopsis mutant. Patten AM; Cardenas CL; Cochrane FC; Laskar DD; Bedgar DL; Davin LB; Lewis NG Phytochemistry; 2005 Sep; 66(17):2092-107. PubMed ID: 16153410 [TBL] [Abstract][Full Text] [Related]
17. Functional testing of a PF02458 homologue of putative rice arabinoxylan feruloyl transferase genes in Brachypodium distachyon. Buanafina MM; Fescemyer HW; Sharma M; Shearer EA Planta; 2016 Mar; 243(3):659-74. PubMed ID: 26612070 [TBL] [Abstract][Full Text] [Related]
18. p-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. Petrik DL; Karlen SD; Cass CL; Padmakshan D; Lu F; Liu S; Le Bris P; Antelme S; Santoro N; Wilkerson CG; Sibout R; Lapierre C; Ralph J; Sedbrook JC Plant J; 2014 Mar; 77(5):713-26. PubMed ID: 24372757 [TBL] [Abstract][Full Text] [Related]
19. Modifying crops to increase cell wall digestibility. Jung HJ; Samac DA; Sarath G Plant Sci; 2012 Apr; 185-186():65-77. PubMed ID: 22325867 [TBL] [Abstract][Full Text] [Related]
20. Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar. Kim KH; Dutta T; Ralph J; Mansfield SD; Simmons BA; Singh S Biotechnol Biofuels; 2017; 10():101. PubMed ID: 28439294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]