BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28469741)

  • 1. Biomechanical Differences in the Sprint Start Between Faster and Slower High-Level Sprinters.
    Čoh M; Peharec S; Bačić P; Mackala K
    J Hum Kinet; 2017 Feb; 56():29-38. PubMed ID: 28469741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anthropometry-driven block setting improves starting block performance in sprinters.
    Cavedon V; Sandri M; Pirlo M; Petrone N; Zancanaro C; Milanese C
    PLoS One; 2019; 14(3):e0213979. PubMed ID: 30917173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start.
    Slawinski J; Bonnefoy A; Levêque JM; Ontanon G; Riquet A; Dumas R; Chèze L
    J Strength Cond Res; 2010 Apr; 24(4):896-905. PubMed ID: 19935105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of different anthropometry-driven block settings on sprint start performance.
    Cavedon V; Bezodis NE; Sandri M; Golia S; Zancanaro C; Milanese C
    Eur J Sport Sci; 2023 Jul; 23(7):1110-1120. PubMed ID: 36453590
    [No Abstract]   [Full Text] [Related]  

  • 5. Gender-Related Differences in Mechanics of the Sprint Start and Sprint Acceleration of Top National-Level Sprinters.
    Mirkov DM; Knezevic OM; Garcia-Ramos A; Čoh M; Šarabon N
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32899837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Starting Block Performance in Sprinters: A Statistical Method for Identifying Discriminative Parameters of the Performance and an Analysis of the Effect of Providing Feedback over a 6-Week Period.
    Fortier S; Basset FA; Mbourou GA; Favérial J; Teasdale N
    J Sports Sci Med; 2005 Jun; 4(2):134-43. PubMed ID: 24431969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Location of the Center of Pressure on the Starting Block Is Related to Sprint Start Performance.
    Nagahara R; Ohshima Y
    Front Sports Act Living; 2019; 1():21. PubMed ID: 33344945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of muscle-tendon length on joint moment and power during sprint starts.
    Mero A; Kuitunen S; Harland M; Kyröläinen H; Komi PV
    J Sports Sci; 2006 Feb; 24(2):165-73. PubMed ID: 16368626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of three different rear knee angles on kinematics in the sprint start.
    Milanese C; Bertucco M; Zancanaro C
    Biol Sport; 2014 Aug; 31(3):209-15. PubMed ID: 25177099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematics of the typical beach flags start for young adult sprinters.
    Lockie RG; Vickery WM; Janse de Jonge XA
    J Sports Sci Med; 2012; 11(3):444-51. PubMed ID: 24149352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sprint start kinematics during competition in elite and world-class male and female sprinters.
    Ciacci S; Merni F; Bartolomei S; Di Michele R
    J Sports Sci; 2017 Jul; 35(13):1270-1278. PubMed ID: 27540875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic and kinetic differences in block and split-stance standing starts during 30 m sprint-running.
    Macadam P; Nuell S; Cronin JB; Nagahara R; Uthoff AM; Graham SP; Tinwala F; Neville J
    Eur J Sport Sci; 2019 Sep; 19(8):1024-1031. PubMed ID: 30732539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical Performance Factors in the Track and Field Sprint Start: A Systematic Review.
    Valamatos MJ; Abrantes JM; Carnide F; Valamatos MJ; Monteiro CP
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters.
    Bezodis NE; Salo AI; Trewartha G
    Eur J Sport Sci; 2015; 15(2):118-24. PubMed ID: 24963548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower limb joint kinetics in the starting blocks and first stance in athletic sprinting.
    Brazil A; Exell T; Wilson C; Willwacher S; Bezodis I; Irwin G
    J Sports Sci; 2017 Aug; 35(16):1629-1635. PubMed ID: 27598715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acceleration capability in elite sprinters and ground impulse: Push more, brake less?
    Morin JB; Slawinski J; Dorel S; de Villareal ES; Couturier A; Samozino P; Brughelli M; Rabita G
    J Biomech; 2015 Sep; 48(12):3149-54. PubMed ID: 26209876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jump kinetic determinants of sprint acceleration performance from starting blocks in male sprinters.
    Maulder PS; Bradshaw EJ; Keogh J
    J Sports Sci Med; 2006; 5(2):359-66. PubMed ID: 24260010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint kinetic determinants of starting block performance in athletic sprinting.
    Brazil A; Exell T; Wilson C; Willwacher S; Bezodis IN; Irwin G
    J Sports Sci; 2018 Jul; 36(14):1656-1662. PubMed ID: 29173043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. World-Class Male Sprinters and High Hurdlers Have Similar Start and Initial Acceleration Techniques.
    Bezodis IN; Brazil A; von Lieres Und Wilkau HC; Wood MA; Paradisis GP; Hanley B; Tucker CB; Pollitt L; Merlino S; Vazel PJ; Walker J; Bissas A
    Front Sports Act Living; 2019; 1():23. PubMed ID: 33344947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in the Force Velocity Mechanical Profile and the Effectiveness of Force Application During Sprint-Acceleration Between Sprinters and Hurdlers.
    Stavridis I; Smilios I; Tsopanidou A; Economou T; Paradisis G
    Front Sports Act Living; 2019; 1():26. PubMed ID: 33344950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.