These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2846978)

  • 1. Central pharmacological activity of a quaternary ammonium compound in streptozotocin diabetic mice.
    Quock RM; Ishii MM; Emmanouil DE
    Life Sci; 1988; 43(17):1411-7. PubMed ID: 2846978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose-related antagonism of the emetic effect of morphine by methylnaltrexone in dogs.
    Foss JF; Bass AS; Goldberg LI
    J Clin Pharmacol; 1993 Aug; 33(8):747-51. PubMed ID: 8408737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylnaltrexone crosses the blood-brain barrier and attenuates centrally-mediated behavioral effects of morphine and oxycodone in mice.
    Walentiny DM; Komla E; Moisa LT; Mustafa MA; Poklis JL; Akbarali HI; Beardsley PM
    Neuropharmacology; 2021 Mar; 185():108437. PubMed ID: 33316279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of methylnaltrexone on morphine-induced cough suppression in guinea pigs.
    Foss JF; Orelind E; Goldberg LI
    Life Sci; 1996; 59(15):PL235-8. PubMed ID: 8845013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of subcutaneous methylnaltrexone on morphine-induced peripherally mediated side effects: a double-blind randomized placebo-controlled trial.
    Yuan CS; Wei G; Foss JF; O'Connor M; Karrison T; Osinski J
    J Pharmacol Exp Ther; 2002 Jan; 300(1):118-23. PubMed ID: 11752106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylnaltrexone prevents morphine-induced kaolin intake in the rat.
    Aung HH; Mehendale SR; Xie JT; Moss J; Yuan CS
    Life Sci; 2004 Apr; 74(22):2685-91. PubMed ID: 15043984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Taste aversion involving central opioid antagonism is potentiated in morphine-dependent rats.
    Mucha RF
    Life Sci; 1989; 45(8):671-8. PubMed ID: 2779356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the antinociceptive effects of oxycodone in diabetic mice.
    Nozaki C; Saitoh A; Kamei J
    Eur J Pharmacol; 2006 Mar; 535(1-3):145-51. PubMed ID: 16533506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonism of heroin and morphine self-administration in rats by the morphine-6beta-glucuronide antagonist 3-O-methylnaltrexone.
    Walker JR; King M; Izzo E; Koob GF; Pasternak GW
    Eur J Pharmacol; 1999 Oct; 383(2):115-9. PubMed ID: 10585524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of the potential role of methylnaltrexone in opioid bowel dysfunction.
    Foss JF
    Am J Surg; 2001 Nov; 182(5A Suppl):19S-26S. PubMed ID: 11755893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylnaltrexone prevents morphine-induced delay in oral-cecal transit time without affecting analgesia: a double-blind randomized placebo-controlled trial.
    Yuan CS; Foss JF; O'Connor M; Toledano A; Roizen MF; Moss J
    Clin Pharmacol Ther; 1996 Apr; 59(4):469-75. PubMed ID: 8612393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opioid-induced delay in gastric emptying: a peripheral mechanism in humans.
    Murphy DB; Sutton JA; Prescott LF; Murphy MB
    Anesthesiology; 1997 Oct; 87(4):765-70. PubMed ID: 9357876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversal of morphine-induced catalepsy in the rat by narcotic antagonists and their quaternary derivatives.
    Brown DR; Robertson MJ; Goldberg LI
    Neuropharmacology; 1983 Mar; 22(3):317-21. PubMed ID: 6682490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antinociceptive effect of dihydroetorphine in diabetic mice.
    Kamei J; Suzuki T; Misawa M; Nagase H; Kasuya Y
    Eur J Pharmacol; 1995 Feb; 275(1):109-13. PubMed ID: 7774657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Streptozotocin-induced diabetes selectively reduces antinociception mediated by mu 1-opioid receptors, but not that mediated by mu 2-opioid receptors.
    Kamei J; Iwamoto Y; Hitosugi H; Misawa M; Nagase H; Kasuya Y
    Neurosci Lett; 1994 Jan; 165(1-2):141-3. PubMed ID: 8015716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of diabetes on the morphine-induced Straub tail reaction in mice.
    Kamei J; Ohsawa M; Misawa M; Nagase H; Kasuya Y
    Neurosci Lett; 1994 Aug; 178(1):66-8. PubMed ID: 7816343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The safety and efficacy of oral methylnaltrexone in preventing morphine-induced delay in oral-cecal transit time.
    Yuan CS; Foss JF; Osinski J; Toledano A; Roizen MF; Moss J
    Clin Pharmacol Ther; 1997 Apr; 61(4):467-75. PubMed ID: 9129564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for the involvement of central opioidergic systems in L-tyrosine methyl ester-induced analgesia in the rat.
    Ramarao P; Bhargava HN
    Pharmacology; 1988; 37(1):1-7. PubMed ID: 3420162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Naloxone-induced analgesia in diabetic mice.
    Kamei J; Kawashima N; Kasuya Y
    Eur J Pharmacol; 1992 Jan; 210(3):339-41. PubMed ID: 1319338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of morphine and methylnaltrexone on gastrointestinal pain in healthy male participants.
    Brokjaer A; Olesen AE; Christrup LL; Dahan A; Drewes AM
    Neurogastroenterol Motil; 2015 May; 27(5):693-704. PubMed ID: 25810023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.