These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 28470045)

  • 1. Low Data Drug Discovery with One-Shot Learning.
    Altae-Tran H; Ramsundar B; Pappu AS; Pande V
    ACS Cent Sci; 2017 Apr; 3(4):283-293. PubMed ID: 28470045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Few-Shot Learning for Low-Data Drug Discovery.
    Vella D; Ebejer JP
    J Chem Inf Model; 2023 Jan; 63(1):27-42. PubMed ID: 36410391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meta Learning With Graph Attention Networks for Low-Data Drug Discovery.
    Lv Q; Chen G; Yang Z; Zhong W; Chen CY
    IEEE Trans Neural Netw Learn Syst; 2024 Aug; 35(8):11218-11230. PubMed ID: 37028032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is Multitask Deep Learning Practical for Pharma?
    Ramsundar B; Liu B; Wu Z; Verras A; Tudor M; Sheridan RP; Pande V
    J Chem Inf Model; 2017 Aug; 57(8):2068-2076. PubMed ID: 28692267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images.
    Cortés-Ciriano I; Bender A
    J Cheminform; 2019 Jun; 11(1):41. PubMed ID: 31218493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. kGCN: a graph-based deep learning framework for chemical structures.
    Kojima R; Ishida S; Ohta M; Iwata H; Honma T; Okuno Y
    J Cheminform; 2020 May; 12(1):32. PubMed ID: 33430993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A self-attention based message passing neural network for predicting molecular lipophilicity and aqueous solubility.
    Tang B; Kramer ST; Fang M; Qiu Y; Wu Z; Xu D
    J Cheminform; 2020 Feb; 12(1):15. PubMed ID: 33431047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting Machine-Learning Prediction of Molecular Activity: Is an Applicability Domain Needed for Quantitative Structure-Activity Relationship Models Based on Deep Neural Networks?
    Liu R; Wang H; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2019 Jan; 59(1):117-126. PubMed ID: 30412667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MoleculeNet: a benchmark for molecular machine learning.
    Wu Z; Ramsundar B; Feinberg EN; Gomes J; Geniesse C; Pappu AS; Leswing K; Pande V
    Chem Sci; 2018 Jan; 9(2):513-530. PubMed ID: 29629118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning in bioinformatics: Introduction, application, and perspective in the big data era.
    Li Y; Huang C; Ding L; Li Z; Pan Y; Gao X
    Methods; 2019 Aug; 166():4-21. PubMed ID: 31022451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors.
    Bian Y; Wang J; Jun JJ; Xie XQ
    Mol Pharm; 2019 Nov; 16(11):4451-4460. PubMed ID: 31589460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph Embedding Deep Learning Guides Microbial Biomarkers' Identification.
    Zhu Q; Jiang X; Zhu Q; Pan M; He T
    Front Genet; 2019; 10():1182. PubMed ID: 31824573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network.
    Liu P; Li H; Li S; Leung KS
    BMC Bioinformatics; 2019 Jul; 20(1):408. PubMed ID: 31357929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks.
    Karimi M; Wu D; Wang Z; Shen Y
    Bioinformatics; 2019 Sep; 35(18):3329-3338. PubMed ID: 30768156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets.
    Korotcov A; Tkachenko V; Russo DP; Ekins S
    Mol Pharm; 2017 Dec; 14(12):4462-4475. PubMed ID: 29096442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. General Approach to Estimate Error Bars for Quantitative Structure-Activity Relationship Predictions of Molecular Activity.
    Liu R; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2018 Aug; 58(8):1561-1575. PubMed ID: 29949366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer Diagnosis Using Deep Learning: A Bibliographic Review.
    Munir K; Elahi H; Ayub A; Frezza F; Rizzi A
    Cancers (Basel); 2019 Aug; 11(9):. PubMed ID: 31450799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AMPL: A Data-Driven Modeling Pipeline for Drug Discovery.
    Minnich AJ; McLoughlin K; Tse M; Deng J; Weber A; Murad N; Madej BD; Ramsundar B; Rush T; Calad-Thomson S; Brase J; Allen JE
    J Chem Inf Model; 2020 Apr; 60(4):1955-1968. PubMed ID: 32243153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.