These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28470280)

  • 1. Photoelectrochemical water reduction over wide gap (Ag,Cu)(In,Ga)S
    Septina W; Sugimoto M; Chao D; Shen Q; Nakatsuka S; Nose Y; Harada T; Ikeda S
    Phys Chem Chem Phys; 2017 May; 19(19):12502-12508. PubMed ID: 28470280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen evolution from water using Ag(x)Cu(1-x)GaSe2 photocathodes under visible light.
    Zhang L; Minegishi T; Kubota J; Domen K
    Phys Chem Chem Phys; 2014 Apr; 16(13):6167-74. PubMed ID: 24562096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring Photoelectrochemical Performance and Stability of Cu(In,Ga)Se
    Koo B; Nam SW; Haight R; Kim S; Oh S; Cho M; Oh J; Lee JY; Ahn BT; Shin B
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5279-5287. PubMed ID: 28124554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Photocurrents with ZnS Passivated Cu(In,Ga)(Se,S)
    Chae SY; Park SJ; Han SG; Jung H; Kim CW; Jeong C; Joo OS; Min BK; Hwang YJ
    J Am Chem Soc; 2016 Dec; 138(48):15673-15681. PubMed ID: 27934030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Durability and Photoelectrochemical Performance of the Earth Abundant Ni-Mo/TiO
    Baek M; Zafar M; Kim S; Kim DH; Jeon CW; Lee J; Yong K
    ChemSusChem; 2018 Oct; 11(20):3679-3688. PubMed ID: 30134016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced photoelectrochemical hydrogen generation in neutral electrolyte using non-vacuum processed CIGS photocathodes with an earth-abundant cobalt sulfide catalyst.
    Wang M; Chang YS; Tsao CW; Fang MJ; Hsu YJ; Choy KL
    Chem Commun (Camb); 2019 Feb; 55(17):2465-2468. PubMed ID: 30734787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of energy band alignment at the Zn(1-x)Mg(x)O/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells.
    Lee CS; Larina L; Shin YM; Al-Ammar EA; Ahn BT
    Phys Chem Chem Phys; 2012 Apr; 14(14):4789-95. PubMed ID: 22382807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of incorporation of Ag into a kesterite Cu
    Ikeda S; Nguyen TH; Okamoto R; Remeika M; Abdellaoui I; Islam MM; Harada T; Abe R; Sakurai T
    Phys Chem Chem Phys; 2021 Dec; 24(1):468-476. PubMed ID: 34901980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the Electric Structures of Heterointerfaces in Pt- and In₂S₃-Modified CuInS₂ Photocathodes Used for Sunlight-Induced Hydrogen Evolution.
    Gunawan ; Septina W; Harada T; Nose Y; Ikeda S
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):16086-92. PubMed ID: 26172945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and Solar Cell Properties of a Ag-Containing Cu
    Nguyen TH; Kawaguchi T; Chantana J; Minemoto T; Harada T; Nakanishi S; Ikeda S
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5455-5463. PubMed ID: 29368914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of pristine Mn2O3 and Ag-Mn2O3 composite thin films by AACVD for photoelectrochemical water splitting.
    Naeem R; Ali Ehsan M; Yahya R; Sohail M; Khaledi H; Mazhar M
    Dalton Trans; 2016 Oct; 45(38):14928-39. PubMed ID: 27549401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wet Pretreatment-Induced Modification of Cu(In,Ga)Se
    Hwang S; Larina L; Lee H; Kim S; Choi KS; Jeon C; Ahn BT; Shin B
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20920-20928. PubMed ID: 29806770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural, Electrical, and Optical Properties of ZnO Film Used as Buffer Layer for CIGS Thin-Film Solar Cell.
    Choi EC; Cha JH; Jung DY; Hong B
    J Nanosci Nanotechnol; 2016 May; 16(5):5087-91. PubMed ID: 27483877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of the Electrical Properties of a Cu(In,Ga)Se₂ Solar Cell Based on a ZnS Buffer Layer from Radio Frequency Magnetron Sputtering.
    Kim HS; Kim G; Kim E; Cho SJ; Lee DJ; Choi SG; Shan F; Kim SJ
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1799-1803. PubMed ID: 30469270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable Low-Band-Gap Sb
    Zhang L; Li Y; Li C; Chen Q; Zhen Z; Jiang X; Zhong M; Zhang F; Zhu H
    ACS Nano; 2017 Dec; 11(12):12753-12763. PubMed ID: 29165986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band gap grading and photovoltaic performance of solution-processed Cu(In,Ga)S2 thin-film solar cells.
    Sohn SH; Han NS; Park YJ; Park SM; An HS; Kim DW; Min BK; Song JK
    Phys Chem Chem Phys; 2014 Dec; 16(48):27112-8. PubMed ID: 25387997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thin Ag Precursor Layer-Assisted Co-Evaporation Process for Low-Temperature Growth of Cu(In,Ga)Se
    Kim G; Kim WM; Park JK; Kim D; Yu H; Jeong JH
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31923-31933. PubMed ID: 31393693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Cost, Efficient, and Durable H
    Muzzillo CP; Klein WE; Li Z; DeAngelis AD; Horsley K; Zhu K; Gaillard N
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19573-19579. PubMed ID: 29767955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Analysis and Band Gap Determination for CIGS Absorber Layers Using Surface Techniques.
    Jang YJ; Lee J; Lee KB; Kim D; Lee Y
    J Anal Methods Chem; 2018; 2018():6751964. PubMed ID: 30420936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achieving over 15% Efficiency in Solution-Processed Cu(In,Ga)(S,Se)
    Kim DS; Park GS; Kim B; Bae S; Park SY; Oh HS; Lee U; Ko DH; Kim J; Min BK
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13289-13300. PubMed ID: 33689281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.