BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 28470325)

  • 1. Continuous fabrication of microcapsules with controllable metal covered nanoparticle arrays using droplet microfluidics for localized surface plasmon resonance.
    Wang J; Jin M; Gong Y; Li H; Wu S; Zhang Z; Zhou G; Shui L; Eijkel JCT; van den Berg A
    Lab Chip; 2017 May; 17(11):1970-1979. PubMed ID: 28470325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly ordered arrays of particle-in-bowl plasmonic nanostructures for surface-enhanced raman scattering.
    Li X; Zhang Y; Shen ZX; Fan HJ
    Small; 2012 Aug; 8(16):2548-54. PubMed ID: 22674732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly nanoparticle based tripetaloid structure arrays as surface-enhanced Raman scattering substrates.
    Sun M; Qian C; Wu W; Yu W; Wang Y; Mao H
    Nanotechnology; 2012 Sep; 23(38):385303. PubMed ID: 22948251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au-Ag core-shell nanoparticle array by block copolymer lithography for synergistic broadband plasmonic properties.
    Cha SK; Mun JH; Chang T; Kim SY; Kim JY; Jin HM; Lee JY; Shin J; Kim KH; Kim SO
    ACS Nano; 2015 May; 9(5):5536-43. PubMed ID: 25893844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially Controlled Fabrication of Surface-Enhanced Raman Scattering Hot Spots through Photoinduced Dewetting of Silver Thin Films.
    Choi HK; Park SM; Jeong J; Lee H; Yeon GJ; Kim DS; Kim ZH
    J Phys Chem Lett; 2022 Apr; 13(13):2969-2975. PubMed ID: 35343701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.
    Wang S; Tay LL; Liu H
    Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing and fabricating double resonance substrate with metallic nanoparticles-metallic grating coupling system for highly intensified surface-enhanced Raman spectroscopy.
    Zhou Y; Li X; Ren X; Yang L; Liu J
    Analyst; 2014 Oct; 139(19):4799-805. PubMed ID: 24975281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binary Plasmonic Assembly Films with Hotspot-Type-Dependent Surface-Enhanced Raman Scattering Properties.
    Lin S; Guan H; Liu Y; Huang S; Li J; Hasi W; Xu Y; Zou J; Dong B
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):53289-53299. PubMed ID: 34704435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precision synthesis: designing hot spots over hot spots via selective gold deposition on silver octahedra edges.
    Liu Y; Pedireddy S; Lee YH; Hegde RS; Tjiu WW; Cui Y; Ling XY
    Small; 2014 Dec; 10(23):4940-50. PubMed ID: 25048617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays.
    Ranjan M; Facsko S
    Nanotechnology; 2012 Dec; 23(48):485307. PubMed ID: 23128982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering.
    Liu GQ; Yu MD; Liu ZQ; Liu XS; Huang S; Pan PP; Wang Y; Liu ML; Gu G
    Nanotechnology; 2015 May; 26(18):185702. PubMed ID: 25872454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative fabrication of a Au nanoparticle-decorated SiO2 mask and its activity on surface-enhanced Raman scattering.
    Chen LY; Yang KH; Chen HC; Liu YC; Chen CH; Chen QY
    Analyst; 2014 Apr; 139(8):1929-37. PubMed ID: 24575422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SERS Amplification from Self-Organized Arrays of Plasmonic Nanocrescents.
    Giordano MC; Foti A; Messina E; Gucciardi PG; Comoretto D; Buatier de Mongeot F
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6629-38. PubMed ID: 26824254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.
    Rao VK; Radhakrishnan TP
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12767-73. PubMed ID: 26035249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of large-scale gold nanoparticle arrays and their application in SERS.
    Zhu SQ; Zhang T; Guo XL; Zhang XY
    Nanoscale Res Lett; 2014 Mar; 9(1):114. PubMed ID: 24624899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.