These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 28470408)

  • 1. Features of haptic and tactile feedback in TORS-a comparison of available surgical systems.
    Friedrich DT; Dürselen L; Mayer B; Hacker S; Schall F; Hahn J; Hoffmann TK; Schuler PJ; Greve J
    J Robot Surg; 2018 Mar; 12(1):103-108. PubMed ID: 28470408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental study about haptic feedback in robotic surgery: may visual feedback substitute tactile feedback?
    Meccariello G; Faedi F; AlGhamdi S; Montevecchi F; Firinu E; Zanotti C; Cavaliere D; Gunelli R; Taurchini M; Amadori A; Vicini C
    J Robot Surg; 2016 Mar; 10(1):57-61. PubMed ID: 26559538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surgeons and non-surgeons prefer haptic feedback of instrument vibrations during robotic surgery.
    Koehn JK; Kuchenbecker KJ
    Surg Endosc; 2015 Oct; 29(10):2970-83. PubMed ID: 25539693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model.
    Wottawa CR; Genovese B; Nowroozi BN; Hart SD; Bisley JW; Grundfest WS; Dutson EP
    Surg Endosc; 2016 Aug; 30(8):3198-209. PubMed ID: 26514132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Modal Haptic Feedback for Grip Force Reduction in Robotic Surgery.
    Abiri A; Pensa J; Tao A; Ma J; Juo YY; Askari SJ; Bisley J; Rosen J; Dutson EP; Grundfest WS
    Sci Rep; 2019 Mar; 9(1):5016. PubMed ID: 30899082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevalence of haptic feedback in robot-mediated surgery: a systematic review of literature.
    Amirabdollahian F; Livatino S; Vahedi B; Gudipati R; Sheen P; Gawrie-Mohan S; Vasdev N
    J Robot Surg; 2018 Mar; 12(1):11-25. PubMed ID: 29196867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transoral Robotic Surgical Proficiency Via Real-Time Tactile Collision Awareness System.
    Mendelsohn AH; Kim C; Song J; Singh A; Le T; Abiri A; Berke GS; Geoghegan R
    Laryngoscope; 2020 Dec; 130 Suppl 6():S1-S17. PubMed ID: 32865822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haptic feedback in robot-assisted minimally invasive surgery.
    Okamura AM
    Curr Opin Urol; 2009 Jan; 19(1):102-7. PubMed ID: 19057225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation of haptic hand-controllers in a robot-assisted surgical system.
    Zareinia K; Maddahi Y; Ng C; Sepehri N; Sutherland GR
    Int J Med Robot; 2015 Dec; 11(4):486-501. PubMed ID: 25624185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hand-tool-tissue interaction forces in neurosurgery for haptic rendering.
    Aggravi M; De Momi E; DiMeco F; Cardinale F; Casaceli G; Riva M; Ferrigno G; Prattichizzo D
    Med Biol Eng Comput; 2016 Aug; 54(8):1229-41. PubMed ID: 26718558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial palpation in robotic surgery using haptic feedback.
    Abiri A; Juo YY; Tao A; Askari SJ; Pensa J; Bisley JW; Dutson EP; Grundfest WS
    Surg Endosc; 2019 Apr; 33(4):1252-1259. PubMed ID: 30187198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of haptic feedback in tele-operated robotic surgery.
    El Rassi I; El Rassi JM
    J Med Eng Technol; 2020 Jul; 44(5):247-254. PubMed ID: 32573288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MH-Pen: A Pen-Type Multi-Mode Haptic Interface for Touch Screens Interaction.
    Chen D; Song A; Tian L; Yu Y; Zhu L
    IEEE Trans Haptics; 2018; 11(4):555-567. PubMed ID: 29993931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable haptic interfaces for applications in gynecologic robotic surgery: a proof of concept in robotic myomectomy.
    Giannini A; Bianchi M; Doria D; Fani S; Caretto M; Bicchi A; Simoncini T
    J Robot Surg; 2019 Aug; 13(4):585-588. PubMed ID: 31062181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on real-time force feedback for a master-slave interventional surgical robotic system.
    Guo S; Wang Y; Xiao N; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):37. PubMed ID: 29654553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of combined tactile and kinesthetic feedback in minimally invasive surgery.
    Lim SC; Lee HK; Park J
    Int J Med Robot; 2015 Sep; 11(3):360-374. PubMed ID: 25328100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of haptic feedback when manipulating nonrigid objects.
    Danion F; Diamond JS; Flanagan JR
    J Neurophysiol; 2012 Jan; 107(1):433-41. PubMed ID: 22013237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.