These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28470449)

  • 1. Is phenotypic plasticity a key mechanism for responding to thermal stress in ants?
    Oms CS; Cerdá X; Boulay R
    Naturwissenschaften; 2017 Jun; 104(5-6):42. PubMed ID: 28470449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remarkable insensitivity of acorn ant morphology to temperature decouples the evolution of physiological tolerance from body size under urban heat islands.
    Yilmaz AR; Chick LD; Perez A; Strickler SA; Vaughn S; Martin RA; Diamond SE
    J Therm Biol; 2019 Oct; 85():102426. PubMed ID: 31657738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for locally adaptive metabolic rates among ant populations along an elevational gradient.
    Shik JZ; Arnan X; Oms CS; Cerdá X; Boulay R
    J Anim Ecol; 2019 Aug; 88(8):1240-1249. PubMed ID: 31077366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of temperature and social environment on worker size in the ant Temnothorax nylanderi.
    Molet M; Péronnet R; Couette S; Canovas C; Doums C
    J Therm Biol; 2017 Jul; 67():22-29. PubMed ID: 28558933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather.
    MacLean HJ; Penick CA; Dunn RR; Diamond SE
    J Insect Physiol; 2017 Jul; 100():77-81. PubMed ID: 28549655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants.
    Kaspari M; Clay NA; Lucas J; Revzen S; Kay A; Yanoviak SP
    Ecology; 2016 Apr; 97(4):1038-47. PubMed ID: 27220219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae).
    Baudier KM; Mudd AE; Erickson SC; O'Donnell S
    J Anim Ecol; 2015 Sep; 84(5):1322-30. PubMed ID: 26072696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leg allometry in ants: extreme long-leggedness in thermophilic species.
    Sommer S; Wehner R
    Arthropod Struct Dev; 2012 Jan; 41(1):71-7. PubMed ID: 21992805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caste development and evolution in ants: it's all about size.
    Trible W; Kronauer DJ
    J Exp Biol; 2017 Jan; 220(Pt 1):53-62. PubMed ID: 28057828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does social thermal regulation constrain individual thermal tolerance in an ant species?
    Villalta I; Oms CS; Angulo E; Molinas-González CR; Devers S; Cerdá X; Boulay R
    J Anim Ecol; 2020 Sep; 89(9):2063-2076. PubMed ID: 32445419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preimaginal and adult experience modulates the thermal response behavior of ants.
    Weidenmüller A; Mayr C; Kleineidam CJ; Roces F
    Curr Biol; 2009 Dec; 19(22):1897-902. PubMed ID: 19913420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of nest surface temperatures and the brain in influencing ant metabolic rates.
    Andrew NR; Ghaedi B; Groenewald B
    J Therm Biol; 2016 Aug; 60():132-9. PubMed ID: 27503725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Out on a limb: Thermal microenvironments in the tropical forest canopy and their relevance to ants.
    Stark AY; Adams BJ; Fredley JL; Yanoviak SP
    J Therm Biol; 2017 Oct; 69():32-38. PubMed ID: 29037401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geography and developmental plasticity shape post-larval thermal tolerance in the golden star tunicate, Botryllus schlosseri.
    Tobias Z; Solow A; Tepolt C
    J Therm Biol; 2024 Jan; 119():103763. PubMed ID: 38071896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dung beetles show metabolic plasticity as pupae and smaller adult body size in response to increased temperature mean and variance.
    Morgan Fleming J; Carter AW; Sheldon KS
    J Insect Physiol; 2021; 131():104215. PubMed ID: 33662376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using physiology to predict the responses of ants to climatic warming.
    Diamond SE; Penick CA; Pelini SL; Ellison AM; Gotelli NJ; Sanders NJ; Dunn RR
    Integr Comp Biol; 2013 Dec; 53(6):965-74. PubMed ID: 23892370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon.
    Sparks MM; Westley PAH; Falke JA; Quinn TP
    Glob Chang Biol; 2017 Dec; 23(12):5203-5217. PubMed ID: 28586156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of the heat shock response is associated with acclimation to novel temperatures but not adaptation to climatic variation in the ants Aphaenogaster picea and A. rudis.
    Helms Cahan S; Nguyen AD; Stanton-Geddes J; Penick CA; Hernáiz-Hernández Y; DeMarco BB; Gotelli NJ
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Feb; 204():113-120. PubMed ID: 27894884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does thermal plasticity align with local adaptation? An interspecific comparison of wing morphology in sepsid flies.
    Rohner PT; Roy J; Schäfer MA; Blanckenhorn WU; Berger D
    J Evol Biol; 2019 May; 32(5):463-475. PubMed ID: 30776168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.