These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28470724)

  • 1. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum.
    Hibi M; Matsuda K; Takeuchi M; Shimizu T; Murakami Y
    Dev Growth Differ; 2017 May; 59(4):228-243. PubMed ID: 28470724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and evolution of cerebellar neural circuits.
    Hashimoto M; Hibi M
    Dev Growth Differ; 2012 Apr; 54(3):373-89. PubMed ID: 22524607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proneural gene-linked neurogenesis in zebrafish cerebellum.
    Kani S; Bae YK; Shimizu T; Tanabe K; Satou C; Parsons MJ; Scott E; Higashijima S; Hibi M
    Dev Biol; 2010 Jul; 343(1-2):1-17. PubMed ID: 20388506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological analysis of the cerebellum and its efferent system in a basal actinopterygian fish, Polypterus senegalus.
    Ikenaga T; Shimomai R; Hagio H; Kimura S; Matsumoto K; Kato DI; Uesugi K; Takeuchi A; Yamamoto N; Hibi M
    J Comp Neurol; 2022 Jun; 530(8):1231-1246. PubMed ID: 34729771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the cerebellum and cerebellar neural circuits.
    Hibi M; Shimizu T
    Dev Neurobiol; 2012 Mar; 72(3):282-301. PubMed ID: 21309081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracing of Afferent Connections in the Zebrafish Cerebellum Using Recombinant Rabies Virus.
    Dohaku R; Yamaguchi M; Yamamoto N; Shimizu T; Osakada F; Hibi M
    Front Neural Circuits; 2019; 13():30. PubMed ID: 31068795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anatomy of zebrafish cerebellum and screen for mutations affecting its development.
    Bae YK; Kani S; Shimizu T; Tanabe K; Nojima H; Kimura Y; Higashijima S; Hibi M
    Dev Biol; 2009 Jun; 330(2):406-26. PubMed ID: 19371731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of zebrin II in the gigantocerebellum of the mormyrid fish Gnathonemus petersii compared with other teleosts.
    Meek J; Hafmans TG; Maler L; Hawkes R
    J Comp Neurol; 1992 Feb; 316(1):17-31. PubMed ID: 1573049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can clues from evolution unlock the molecular development of the cerebellum?
    Butts T; Chaplin N; Wingate RJ
    Mol Neurobiol; 2011 Feb; 43(1):67-76. PubMed ID: 21174175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: implications for the evolution of basal ganglia.
    Medina L; Reiner A
    Brain Behav Evol; 1995; 46(4-5):235-58. PubMed ID: 8564466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of the vertebrate cerebellum: absence of a proliferative external granule layer in a non-teleost ray-finned fish.
    Butts T; Modrell MS; Baker CV; Wingate RJ
    Evol Dev; 2014 Mar; 16(2):92-100. PubMed ID: 24617988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebellar efferent neurons in teleost fish.
    Ikenaga T; Yoshida M; Uematsu K
    Cerebellum; 2006; 5(4):268-74. PubMed ID: 17134989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression profiling of granule cells and Purkinje cells in the zebrafish cerebellum.
    Takeuchi M; Yamaguchi S; Sakakibara Y; Hayashi T; Matsuda K; Hara Y; Tanegashima C; Shimizu T; Kuraku S; Hibi M
    J Comp Neurol; 2017 May; 525(7):1558-1585. PubMed ID: 27615194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry.
    Takeuchi M; Matsuda K; Yamaguchi S; Asakawa K; Miyasaka N; Lal P; Yoshihara Y; Koga A; Kawakami K; Shimizu T; Hibi M
    Dev Biol; 2015 Jan; 397(1):1-17. PubMed ID: 25300581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cerebellum and cerebellum-like structures of cartilaginous fishes.
    Montgomery JC; Bodznick D; Yopak KE
    Brain Behav Evol; 2012; 80(2):152-65. PubMed ID: 22986830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic Mechanism for the Cyclostome Cerebellar Neurons Reveals Early Evolution of the Vertebrate Cerebellum.
    Sugahara F; Pascual-Anaya J; Kuraku S; Kuratani S; Murakami Y
    Front Cell Dev Biol; 2021; 9():700860. PubMed ID: 34485287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Everted Amygdala of Ray-Finned Fish: Zebrafish Makes a Case.
    Mueller T
    Brain Behav Evol; 2022; 97(6):321-335. PubMed ID: 35760049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foxp and Skor family proteins control differentiation of Purkinje cells from Ptf1a- and Neurog1-expressing progenitors in zebrafish.
    Itoh T; Uehara M; Yura S; Wang JC; Fujii Y; Nakanishi A; Shimizu T; Hibi M
    Development; 2024 Apr; 151(7):. PubMed ID: 38456494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine system, cerebellum, and nucleus ruber in fish and mammals.
    Matsui H
    Dev Growth Differ; 2017 May; 59(4):219-227. PubMed ID: 28547762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomy of the posterior caudal lobe of the cerebellum and the eminentia granularis posterior in a mormyrid fish.
    Campbell HR; Meek J; Zhang J; Bell CC
    J Comp Neurol; 2007 Jun; 502(5):714-35. PubMed ID: 17436286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.