These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 28470864)
41. Forests synchronize their growth in contrasting Eurasian regions in response to climate warming. Shestakova TA; Gutiérrez E; Kirdyanov AV; Camarero JJ; Génova M; Knorre AA; Linares JC; Resco de Dios V; Sánchez-Salguero R; Voltas J Proc Natl Acad Sci U S A; 2016 Jan; 113(3):662-7. PubMed ID: 26729860 [TBL] [Abstract][Full Text] [Related]
42. Radial Growth of Trees Rather Than Shrubs in Boreal Forests Is Inhibited by Drought. Yang J; Zhang Q; Song W; Zhang X; Wang X Front Plant Sci; 2022; 13():912916. PubMed ID: 35720605 [TBL] [Abstract][Full Text] [Related]
44. Vulnerability to forest loss through altered postfire recovery dynamics in a warming climate in the Klamath Mountains. Tepley AJ; Thompson JR; Epstein HE; Anderson-Teixeira KJ Glob Chang Biol; 2017 Oct; 23(10):4117-4132. PubMed ID: 28447370 [TBL] [Abstract][Full Text] [Related]
45. Disparate effects of global-change drivers on mountain conifer forests: warming-induced growth enhancement in young trees vs. CO2 fertilization in old trees from wet sites. Camarero JJ; Gazol A; Galván JD; Sangüesa-Barreda G; Gutiérrez E Glob Chang Biol; 2015 Feb; 21(2):738-49. PubMed ID: 25362899 [TBL] [Abstract][Full Text] [Related]
46. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important? Foster JR; Finley AO; D'Amato AW; Bradford JB; Banerjee S Glob Chang Biol; 2016 Jun; 22(6):2138-51. PubMed ID: 26717889 [TBL] [Abstract][Full Text] [Related]
47. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland. Lara MJ; Genet H; McGuire AD; Euskirchen ES; Zhang Y; Brown DR; Jorgenson MT; Romanovsky V; Breen A; Bolton WR Glob Chang Biol; 2016 Feb; 22(2):816-29. PubMed ID: 26463267 [TBL] [Abstract][Full Text] [Related]
48. Contrasting growth responses to drought in three tree species widely distributed in northern China. Kang J; Shen H; Zhang S; Xu L; Tang Z; Tang Y; Fang J Sci Total Environ; 2024 Jan; 908():168331. PubMed ID: 37931814 [TBL] [Abstract][Full Text] [Related]
49. Drought stress mitigation by nitrogen in boreal forests inferred from stable isotopes. Dulamsuren C; Hauck M Glob Chang Biol; 2021 Oct; 27(20):5211-5224. PubMed ID: 34309985 [TBL] [Abstract][Full Text] [Related]
50. Siberian larch forests and the ion content of thaw lakes form a geochemically functional entity. Herzschuh U; Pestryakova LA; Savelieva LA; Heinecke L; Böhmer T; Biskaborn BK; Andreev A; Ramisch A; Shinneman AL; Birks HJ Nat Commun; 2013; 4():2408. PubMed ID: 24005763 [TBL] [Abstract][Full Text] [Related]
51. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests. Chen HY; Luo Y Glob Chang Biol; 2015 Oct; 21(10):3675-84. PubMed ID: 26136379 [TBL] [Abstract][Full Text] [Related]
52. Run to the hills: Forest growth responsiveness to drought increased at higher elevation during the late 20th century. Pompa-García M; González-Cásares M; Gazol A; Camarero JJ Sci Total Environ; 2021 Jun; 772():145286. PubMed ID: 33578149 [TBL] [Abstract][Full Text] [Related]
53. Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape. Jones IL; Peres CA; Benchimol M; Bunnefeld L; Dent DH PLoS One; 2017; 12(10):e0185527. PubMed ID: 29040272 [TBL] [Abstract][Full Text] [Related]
54. Boreal tree species diversity increases with global warming but is reversed by extremes. Xi Y; Zhang W; Wei F; Fang Z; Fensholt R Nat Plants; 2024 Oct; 10(10):1473-1483. PubMed ID: 39261713 [TBL] [Abstract][Full Text] [Related]
55. Pollen-based reconstruction of vegetational and climatic change over the past ~30 ka at Shudu Lake in the Hengduan Mountains of Yunnan, southwestern China. Yao YF; Song XY; Wortley AH; Wang YF; Blackmore S; Li CS PLoS One; 2017; 12(2):e0171967. PubMed ID: 28182711 [TBL] [Abstract][Full Text] [Related]
56. Reassessment of growth-climate relations indicates the potential for decline across Eurasian boreal larch forests. Li W; Manzanedo RD; Jiang Y; Ma W; Du E; Zhao S; Rademacher T; Dong M; Xu H; Kang X; Wang J; Wu F; Cui X; Pederson N Nat Commun; 2023 Jun; 14(1):3358. PubMed ID: 37291110 [TBL] [Abstract][Full Text] [Related]
57. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Frost GV; Epstein HE Glob Chang Biol; 2014 Apr; 20(4):1264-77. PubMed ID: 24115456 [TBL] [Abstract][Full Text] [Related]
58. Tree species growth response to climate warming varies by forest canopy position in boreal and temperate forests. Wang J; D'Orangeville L; Taylor AR Glob Chang Biol; 2023 Sep; 29(18):5397-5414. PubMed ID: 37395653 [TBL] [Abstract][Full Text] [Related]
59. Forest fire size amplifies postfire land surface warming. Zhao J; Yue C; Wang J; Hantson S; Wang X; He B; Li G; Wang L; Zhao H; Luyssaert S Nature; 2024 Sep; 633(8031):828-834. PubMed ID: 39322733 [TBL] [Abstract][Full Text] [Related]
60. Climate-growth relationships in a Larix decidua Mill. network in the French Alps. Saulnier M; Corona C; Stoffel M; Guibal F; Edouard JL Sci Total Environ; 2019 May; 664():554-566. PubMed ID: 30763836 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]