These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28470993)

  • 1. The application of Bayesian hierarchical models to quantify individual diet specialization.
    Coblentz KE; Rosenblatt AE; Novak M
    Ecology; 2017 Jun; 98(6):1535-1547. PubMed ID: 28470993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative prey abundance and predator preference predict individual diet variation in prey-switching experiments.
    Coblentz KE
    Ecology; 2020 Jan; 101(1):e02911. PubMed ID: 31608433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian characterization of uncertainty in species interaction strengths.
    Wolf C; Novak M; Gitelman AI
    Oecologia; 2017 Jun; 184(2):327-339. PubMed ID: 28424892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting individual foraging specialization and temporal diet stability across the range of a large "generalist" apex predator.
    Rosenblatt AE; Nifong JC; Heithaus MR; Mazzotti FJ; Cherkiss MS; Jeffery BM; Elsey RM; Decker RA; Silliman BR; Guillette LJ; Lowers RH; Larson JC
    Oecologia; 2015 May; 178(1):5-16. PubMed ID: 25645268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Timescales alter the inferred strength and temporal consistency of intraspecific diet specialization.
    Novak M; Tinker MT
    Oecologia; 2015 May; 178(1):61-74. PubMed ID: 25656583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting patterns of individual specialization and trophic coupling in two marine apex predators.
    Matich P; Heithaus MR; Layman CA
    J Anim Ecol; 2011 Jan; 80(1):294-305. PubMed ID: 20831730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EcoDiet: A hierarchical Bayesian model to combine stomach, biotracer, and literature data into diet matrix estimation.
    Hernvann PY; Gascuel D; Kopp D; Robert M; Rivot E
    Ecol Appl; 2022 Mar; 32(2):e2521. PubMed ID: 34918402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological Dynamics: Integrating Empirical, Statistical, and Analytical Methods.
    Laubmeier AN; Cazelles B; Cuddington K; Erickson KD; Fortin MJ; Ogle K; Wikle CK; Zhu K; Zipkin EF
    Trends Ecol Evol; 2020 Dec; 35(12):1090-1099. PubMed ID: 32933777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour.
    Woo KJ; Elliott KH; Davidson M; Gaston AJ; Davoren GK
    J Anim Ecol; 2008 Nov; 77(6):1082-91. PubMed ID: 18624834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predator diet breadth influences the relative importance of bottom-up and top-down control of prey biomass and diversity.
    Jiang L; Morin PJ
    Am Nat; 2005 Mar; 165(3):350-63. PubMed ID: 15729665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.
    Green SJ; Côté IM
    J Anim Ecol; 2014 Nov; 83(6):1451-60. PubMed ID: 24861366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Bayesian isotope mixing models: a response to Jackson et al. (2009).
    Semmens BX; Moore JW; Ward EJ
    Ecol Lett; 2009 Mar; 12(3):E6-8. PubMed ID: 19245585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The adaptation of generalist predators' diet in a multi-prey context: insights from new functional responses.
    Baudrot V; Perasso A; Fritsch C; Giraudoux P; Raoul F
    Ecology; 2016 Jul; 97(7):1832-1841. PubMed ID: 27859163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classical and Bayesian inference in neuroimaging: applications.
    Friston KJ; Glaser DE; Henson RN; Kiebel S; Phillips C; Ashburner J
    Neuroimage; 2002 Jun; 16(2):484-512. PubMed ID: 12030833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian inference for functional response in a stochastic predator-prey system.
    Gilioli G; Pasquali S; Ruggeri F
    Bull Math Biol; 2008 Feb; 70(2):358-81. PubMed ID: 17701377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size, sex and individual-level behaviour drive intrapopulation variation in cross-ecosystem foraging of a top-predator.
    Nifong JC; Layman CA; Silliman BR
    J Anim Ecol; 2015 Jan; 84(1):35-48. PubMed ID: 25327480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Go big or … don't? A field-based diet evaluation of freshwater piscivore and prey fish size relationships.
    Gaeta JW; Ahrenstorff TD; Diana JS; Fetzer WW; Jones TS; Lawson ZJ; McInerny MC; Santucci VJ; Vander Zanden MJ
    PLoS One; 2018; 13(3):e0194092. PubMed ID: 29543856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do intraspecific or interspecific interactions determine responses to predators feeding on a shared size-structured prey community?
    ten Brink H; Mazumdar AK; Huddart J; Persson L; Cameron TC
    J Anim Ecol; 2015 Mar; 84(2):414-26. PubMed ID: 25314614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the effects of trophic complexity on a keystone predator by disassembling a partial intraguild predation food web.
    Davenport JM; Chalcraft DR
    J Anim Ecol; 2012 Jan; 81(1):242-50. PubMed ID: 21950407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal shifts in predator body size diversity and trophic interactions in size-structured predator-prey systems.
    Rudolf VH
    J Anim Ecol; 2012 May; 81(3):524-32. PubMed ID: 22191419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.