These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28471048)

  • 1. Directing Reaction Pathways through Controlled Reactant Binding at Pd-TiO
    Zhang J; Wang B; Nikolla E; Medlin JW
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6594-6598. PubMed ID: 28471048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging Cu/CuFe
    Koley P; Chandra Shit S; Joseph B; Pollastri S; Sabri YM; Mayes ELH; Nakka L; Tardio J; Mondal J
    ACS Appl Mater Interfaces; 2020 May; 12(19):21682-21700. PubMed ID: 32314915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen Spillover-Enhanced Heterogeneously Catalyzed Hydrodeoxygenation for Biomass Upgrading.
    Geng Y; Li H
    ChemSusChem; 2022 Apr; 15(8):e202102495. PubMed ID: 35230748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SBA-15 supported Ni-Cu catalysts for hydrodeoxygenation of m-cresol to toluene.
    Deplazes R; Teles CA; Ciotonea C; Simon P; El Rassi E; Dhainaut J; Marinova M; Canilho N; Richard F; Royer S
    ChemSusChem; 2024 Jul; ():e202400685. PubMed ID: 39004606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation of Biomass by Superhydrophilic Nitrogen/Oxygen Co-Doped Porous Carbon Nanosphere Supported Pd Nanoparticles.
    Yu H; Xu Y; Havener K; Zhang M; Zhang L; Wu W; Huang K
    Small; 2022 Apr; 18(16):e2106893. PubMed ID: 35254000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodeoxygenation of Oxygen-Containing Aromatic Plastic Wastes into Cycloalkanes and Aromatics.
    Wang N; Liu J; Liu S; Liu G
    Chempluschem; 2024 May; ():e202400190. PubMed ID: 38698501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Batch and Continuous-Flow Preparation of Biomass-Derived Furfural Acetals over a TiO
    Zhou B; Song F; Ma X; Wang L
    ChemSusChem; 2021 Jun; 14(11):2341-2351. PubMed ID: 33831278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling Heterogeneous Catalysis with Organic Monolayers on Metal Oxides.
    Jenkins AH; Medlin JW
    Acc Chem Res; 2021 Nov; 54(21):4080-4090. PubMed ID: 34644060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis.
    Bu Q; Lei H; Zacher AH; Wang L; Ren S; Liang J; Wei Y; Liu Y; Tang J; Zhang Q; Ruan R
    Bioresour Technol; 2012 Nov; 124():470-7. PubMed ID: 23021958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective One-Pot Production of High-Grade Diesel-Range Alkanes from Furfural and 2-Methylfuran over Pd/NbOPO
    Xia Q; Xia Y; Xi J; Liu X; Zhang Y; Guo Y; Wang Y
    ChemSusChem; 2017 Feb; 10(4):747-753. PubMed ID: 27863146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic contribution of metal-acid sites in selective hydrodeoxygenation of biomass derivatives over Cu/CoO
    Wang X; Zhang Z; Yan Z; Li Q; Zhang C; Liang X
    J Colloid Interface Sci; 2023 Oct; 648():1-11. PubMed ID: 37295360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran.
    Saha B; Bohn CM; Abu-Omar MM
    ChemSusChem; 2014 Nov; 7(11):3095-101. PubMed ID: 25187223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring of Surface Acidic Sites in Co-MoS
    Zhang Y; Liu T; Xia Q; Jia H; Hong X; Liu G
    J Phys Chem Lett; 2021 Jun; 12(24):5668-5674. PubMed ID: 34114828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximizing the Number of Interfacial Sites in Single-Atom Catalysts for the Highly Selective, Solvent-Free Oxidation of Primary Alcohols.
    Li T; Liu F; Tang Y; Li L; Miao S; Su Y; Zhang J; Huang J; Sun H; Haruta M; Wang A; Qiao B; Li J; Zhang T
    Angew Chem Int Ed Engl; 2018 Jun; 57(26):7795-7799. PubMed ID: 29697178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly effective and chemoselective hydrodeoxygenation of aromatic alcohols.
    Xu C; Wu H; Zhang Z; Zheng B; Zhai J; Zhang K; Wu W; Mei X; He M; Han B
    Chem Sci; 2022 Feb; 13(6):1629-1635. PubMed ID: 35282624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodeoxygenation of Oxygenates Derived from Biomass Pyrolysis Using Titanium Dioxide-Supported Cobalt Catalysts.
    Hongkailers S; Pattiya A; Hinchiranan N
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green catalyst for clean fuel production via hydrodeoxygenation.
    Bilge S; Donar YO; Ergenekon S; Özoylumlu B; Sinağ A
    Turk J Chem; 2023; 47(5):968-990. PubMed ID: 38173737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Nanoparticles-Loaded Ultrathin g-C
    Hao Y; Hao S; Li Q; Liu X; Zou H; Yang H
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):47236-47243. PubMed ID: 34553905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkanes from Bioderived Furans by using Metal Triflates and Palladium-Catalyzed Hydrodeoxygenation of Cyclic Ethers.
    Song HJ; Deng J; Cui MS; Li XL; Liu XX; Zhu R; Wu WP; Fu Y
    ChemSusChem; 2015 Dec; 8(24):4250-5. PubMed ID: 26611542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.