BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28471069)

  • 1. Surprising Stability of Larger Criegee Intermediates on Aqueous Interfaces.
    Zhong J; Kumar M; Zhu CQ; Francisco JS; Zeng XC
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7740-7744. PubMed ID: 28471069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Mechanisms and Atmospheric Implications of Criegee Intermediate-Alcohol Chemistry in the Gas Phase and Aqueous Surface Environments.
    Tang B; Li Z
    J Phys Chem A; 2020 Oct; 124(41):8585-8593. PubMed ID: 32946233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into Chemistry on Cloud/Aerosol Water Surfaces.
    Zhong J; Kumar M; Francisco JS; Zeng XC
    Acc Chem Res; 2018 May; 51(5):1229-1237. PubMed ID: 29633837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.
    Zhu C; Kumar M; Zhong J; Li L; Francisco JS; Zeng XC
    J Am Chem Soc; 2016 Sep; 138(35):11164-9. PubMed ID: 27509207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substituent Dependence on the Reactions of Criegee Intermediates with Carbon Dioxide and Carbon Monoxide.
    Takahashi K
    Chempluschem; 2023 Sep; 88(9):e202300354. PubMed ID: 37635074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of reactions between Criegee intermediates and methanesulfonic acid at the air-water interface.
    Ma X; Zhao X; Huang Z; Wang J; Lv G; Xu F; Zhang Q; Wang W
    Sci Total Environ; 2020 Mar; 707():135804. PubMed ID: 31862431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.
    Huang HL; Chao W; Lin JJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10857-62. PubMed ID: 26283390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional Proton Transfer in the Reaction of the Simplest Criegee Intermediate with Water Involving the Formation of Transient H
    Liu J; Liu Y; Yang J; Zeng XC; He X
    J Phys Chem Lett; 2021 Apr; 12(13):3379-3386. PubMed ID: 33784110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substituent Effect in the Reactions between Criegee Intermediates and 3-Aminopropanol.
    Kuo MT; Yang JN; Lin JJ; Takahashi K
    J Phys Chem A; 2021 Aug; 125(30):6580-6590. PubMed ID: 34314585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of Criegee Intermediate with Nitric Acid at the Air-Water Interface.
    Kumar M; Zhong J; Zeng XC; Francisco JS
    J Am Chem Soc; 2018 Apr; 140(14):4913-4921. PubMed ID: 29564890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QM/MM studies on ozonolysis of α-humulene and Criegee reactions with acids and water at air-water/acetonitrile interfaces.
    Xiao P; Yang JJ; Fang WH; Cui G
    Phys Chem Chem Phys; 2018 Jun; 20(23):16138-16150. PubMed ID: 29854994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heteroatom Tuning of Bimolecular Criegee Reactions and Its Implications.
    Kumar M; Francisco JS
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13432-13435. PubMed ID: 27678012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rate coefficients of C(1) and C(2) Criegee intermediate reactions with formic and acetic Acid near the collision limit: direct kinetics measurements and atmospheric implications.
    Welz O; Eskola AJ; Sheps L; Rotavera B; Savee JD; Scheer AM; Osborn DL; Lowe D; Murray Booth A; Xiao P; Anwar H Khan M; Percival CJ; Shallcross DE; Taatjes CA
    Angew Chem Int Ed Engl; 2014 Apr; 53(18):4547-50. PubMed ID: 24668781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isomerization and decomposition of a Criegee intermediate in the ozonolysis of alkenes: dynamics using a multireference potential.
    Kalinowski J; Räsänen M; Heinonen P; Kilpeläinen I; Gerber RB
    Angew Chem Int Ed Engl; 2014 Jan; 53(1):265-8. PubMed ID: 24227050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical Study on the Gas Phase and Gas-Liquid Interface Reaction Mechanism of Criegee Intermediates with Glycolic Acid Sulfate.
    Li L; Zhang Q; Wei Y; Wang Q; Wang W
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Study on the Gas-Phase and Aqueous Interface Reaction Mechanism of Criegee Intermediates with 2-Methylglyceric Acid and the Nucleation of Products.
    Li L; Zhang Q; Wei Y; Wang Q; Wang W
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-Dependence of the Rates of Reaction of Trifluoroacetic Acid with Criegee Intermediates.
    Chhantyal-Pun R; McGillen MR; Beames JM; Khan MAH; Percival CJ; Shallcross DE; Orr-Ewing AJ
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9044-9047. PubMed ID: 28614628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple evaluations of atmospheric behavior between Criegee intermediates and HCHO: Gas-phase and air-water interface reaction.
    Zhang T; Wen M; Ding C; Zhang Y; Ma X; Wang Z; Lily M; Liu J; Wang R
    J Environ Sci (China); 2023 May; 127():308-319. PubMed ID: 36522063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of multifunctional compound monoethanolamine on Criegee intermediates reactions and its atmospheric implications.
    Ma X; Zhao X; Wei Y; Wang W; Xu F; Zhang Q; Wang W
    Sci Total Environ; 2020 May; 715():136812. PubMed ID: 32041039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.