These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 28471162)

  • 1. Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry.
    Bhanushali S; Jason NN; Ghosh P; Ganesh A; Simon GP; Cheng W
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18925-18935. PubMed ID: 28471162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity.
    Zhu D; Wang L; Yu W; Xie H
    Sci Rep; 2018 Mar; 8(1):5282. PubMed ID: 29588467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic preparation, stability and thermal conductivity of a capped copper-methanol nanofluid.
    Graves JE; Latvytė E; Greenwood A; Emekwuru NG
    Ultrason Sonochem; 2019 Jul; 55():25-31. PubMed ID: 31084788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boron nitride nanosheet nanofluids for enhanced thermal conductivity.
    Hou X; Wang M; Fu L; Chen Y; Jiang N; Lin CT; Wang Z; Yu J
    Nanoscale; 2018 Jul; 10(27):13004-13010. PubMed ID: 29682657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal properties of nanofluids.
    Philip J; Shima PD
    Adv Colloid Interface Sci; 2012 Nov; 183-184():30-45. PubMed ID: 22921845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids.
    Saterlie M; Sahin H; Kavlicoglu B; Liu Y; Graeve O
    Nanoscale Res Lett; 2011 Mar; 6(1):217. PubMed ID: 21711719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review on thermal properties of nanofluids: Recent developments.
    Angayarkanni SA; Philip J
    Adv Colloid Interface Sci; 2015 Nov; 225():146-76. PubMed ID: 26391519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system.
    Liu M; Lin MC; Wang C
    Nanoscale Res Lett; 2011 Apr; 6(1):297. PubMed ID: 21711787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is metal nanofluid reliable as heat carrier?
    Nine MJ; Chung H; Tanshen MR; Osman NA; Jeong H
    J Hazard Mater; 2014 May; 273():183-91. PubMed ID: 24735805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-Oxidised Carbon Nanofibre-Based Nanofluids: Structural, Morphological, Stability and Thermal Properties.
    Mohd Saidi N; Abdullah N; Norizan MN; Janudin N; Mohd Kasim NA; Osman MJ; Mohamad IS; Mohd Rosli MA
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizations of MWCNTs Nanofluids on the Effect of Surface Oxidative Treatments.
    Mohd Saidi N; Norizan MN; Abdullah N; Janudin N; Kasim NAM; Osman MJ; Mohamad IS
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-dependent effect of percolation and Brownian motion on the thermal conductivity of TiO2-ethanol nanofluids.
    Li CC; Hau NY; Wang Y; Soh AK; Feng SP
    Phys Chem Chem Phys; 2016 Jun; 18(22):15363-8. PubMed ID: 27212639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of thermal conductivity and thermal performance of heat pipes by structurally designed copolymer stabilized ZnO nanofluid.
    Pavithra KS; Parol V; Brusly Solomon A; Yashoda MP
    Sci Rep; 2023 Aug; 13(1):14219. PubMed ID: 37648693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical review on thermal conductivity enhancement of graphene-based nanofluids.
    Pavía M; Alajami K; Estellé P; Desforges A; Vigolo B
    Adv Colloid Interface Sci; 2021 Aug; 294():102452. PubMed ID: 34139659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Modification Approach to TiO2 Nanofluids with High Particle Concentration, Low Viscosity, and Electrochemical Activity.
    Sen S; Govindarajan V; Pelliccione CJ; Wang J; Miller DJ; Timofeeva EV
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20538-47. PubMed ID: 26322861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nanoparticle on rheological properties of surfactant-based nanofluid for effective carbon utilization: capturing and storage prospects.
    Kumar RS; Goswami R; Chaturvedi KR; Sharma T
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):53578-53593. PubMed ID: 34036498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory.
    Timofeeva EV; Gavrilov AN; McCloskey JM; Tolmachev YV; Sprunt S; Lopatina LM; Selinger JV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061203. PubMed ID: 18233838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aging-resistant nanofluids containing covalent functionalized boron nitride nanosheets.
    Lee D; Park JJ; Lee MK; Lee GJ
    Nanotechnology; 2017 Oct; 28(40):405704. PubMed ID: 28805649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Performance of Hybrid-Inspired Coolant for Radiator Application.
    Benedict F; Kumar A; Kadirgama K; Mohammed HA; Ramasamy D; Samykano M; Saidur R
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32498258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Experimental Study on the Rheological Properties and Thermal Conductivity of Halloysite Nanofluids.
    Le Ba T; Alkurdi AQ; Lukács IE; Molnár J; Wongwises S; Gróf G; Szilágyi IM
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32937934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.