These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 28471355)
1. Structure of NADP Wang R; Wu J; Jin DK; Chen Y; Lv Z; Chen Q; Miao Q; Huo X; Wang F Acta Crystallogr F Struct Biol Commun; 2017 May; 73(Pt 5):246-252. PubMed ID: 28471355 [TBL] [Abstract][Full Text] [Related]
2. Identification, cloning, heterologous expression, and characterization of a NADPH-dependent 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens. Liu L; Aigner A; Schmid RD Appl Microbiol Biotechnol; 2011 Apr; 90(1):127-35. PubMed ID: 21181147 [TBL] [Abstract][Full Text] [Related]
3. Engineering of a hydroxysteroid dehydrogenase with simultaneous enhancement in activity and thermostability for efficient biosynthesis of ursodeoxycholic acid. Li Y; Li S-F; Zhang L; Xue Y-P; Zheng Y-G Appl Environ Microbiol; 2024 Sep; 90(9):e0123724. PubMed ID: 39207158 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of human type III 3alpha-hydroxysteroid dehydrogenase/bile acid binding protein complexed with NADP(+) and ursodeoxycholate. Jin Y; Stayrook SE; Albert RH; Palackal NT; Penning TM; Lewis M Biochemistry; 2001 Aug; 40(34):10161-8. PubMed ID: 11513593 [TBL] [Abstract][Full Text] [Related]
5. Multi-enzymatic one-pot reduction of dehydrocholic acid to 12-keto-ursodeoxycholic acid with whole-cell biocatalysts. Sun B; Kantzow C; Bresch S; Castiglione K; Weuster-Botz D Biotechnol Bioeng; 2013 Jan; 110(1):68-77. PubMed ID: 22806613 [TBL] [Abstract][Full Text] [Related]
7. Novel whole-cell biocatalysts with recombinant hydroxysteroid dehydrogenases for the asymmetric reduction of dehydrocholic acid. Braun M; Sun B; Anselment B; Weuster-Botz D Appl Microbiol Biotechnol; 2012 Sep; 95(6):1457-68. PubMed ID: 22581067 [TBL] [Abstract][Full Text] [Related]
8. Engineering 7β-Hydroxysteroid Dehydrogenase for Enhanced Ursodeoxycholic Acid Production by Multiobjective Directed Evolution. Zheng MM; Chen KC; Wang RF; Li H; Li CX; Xu JH J Agric Food Chem; 2017 Feb; 65(6):1178-1185. PubMed ID: 28116898 [TBL] [Abstract][Full Text] [Related]
9. Sequence and structure-guided discovery of a novel NADH-dependent 7β-hydroxysteroid dehydrogenase for efficient biosynthesis of ursodeoxycholic acid. Huang B; Yang K; Amanze C; Yan Z; Zhou H; Liu X; Qiu G; Zeng W Bioorg Chem; 2023 Feb; 131():106340. PubMed ID: 36586301 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of l-rhamnose 1-dehydrogenase involved in the nonphosphorylative pathway of l-rhamnose metabolism in bacteria. Yoshiwara K; Watanabe S; Watanabe Y FEBS Lett; 2021 Mar; 595(5):637-646. PubMed ID: 33482017 [TBL] [Abstract][Full Text] [Related]
11. Completion of the gut microbial epi-bile acid pathway. Doden HL; Wolf PG; Gaskins HR; Anantharaman K; Alves JMP; Ridlon JM Gut Microbes; 2021; 13(1):1-20. PubMed ID: 33938389 [TBL] [Abstract][Full Text] [Related]
12. Cloning, expression, and biochemical characterization of a novel NADP Bakonyi D; Hummel W Enzyme Microb Technol; 2017 Apr; 99():16-24. PubMed ID: 28193327 [TBL] [Abstract][Full Text] [Related]
13. In search of sustainable chemical processes: cloning, recombinant expression, and functional characterization of the 7α- and 7β-hydroxysteroid dehydrogenases from Clostridium absonum. Ferrandi EE; Bertolesi GM; Polentini F; Negri A; Riva S; Monti D Appl Microbiol Biotechnol; 2012 Sep; 95(5):1221-33. PubMed ID: 22198717 [TBL] [Abstract][Full Text] [Related]
14. Structural studies on 10-hydroxygeraniol dehydrogenase: A novel linear substrate-specific dehydrogenase from Catharanthus roseus. Sandholu AS; Mujawar SP; Ramakrishnan K; Thulasiram HV; Kulkarni K Proteins; 2020 Sep; 88(9):1197-1206. PubMed ID: 32181958 [TBL] [Abstract][Full Text] [Related]
15. Machine-Learning-Guided Engineering of an NADH-Dependent 7β-Hydroxysteroid Dehydrogenase for Economic Synthesis of Ursodeoxycholic Acid. Wang MQ; You ZN; Yang BY; Xia ZW; Chen Q; Pan J; Li CX; Xu JH J Agric Food Chem; 2023 Dec; 71(49):19672-19681. PubMed ID: 38016669 [TBL] [Abstract][Full Text] [Related]
16. Structural insights into the mechanism of the drastic changes in enzymatic activity of the cytochrome P450 vitamin D Yasutake Y; Kameda T; Tamura T Acta Crystallogr F Struct Biol Commun; 2017 May; 73(Pt 5):266-275. PubMed ID: 28471358 [TBL] [Abstract][Full Text] [Related]
17. Structural insights into inhibitor binding to a fungal ortholog of aspartate semialdehyde dehydrogenase. Dahal GP; Viola RE Biochem Biophys Res Commun; 2018 Sep; 503(4):2848-2854. PubMed ID: 30107909 [TBL] [Abstract][Full Text] [Related]
18. Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties. Bailleul G; Nicoll CR; Mascotti ML; Mattevi A; Fraaije MW J Biol Chem; 2021; 296():100221. PubMed ID: 33759784 [TBL] [Abstract][Full Text] [Related]
19. Long-range structural defects by pathogenic mutations in most severe glucose-6-phosphate dehydrogenase deficiency. Horikoshi N; Hwang S; Gati C; Matsui T; Castillo-Orellana C; Raub AG; Garcia AA; Jabbarpour F; Batyuk A; Broweleit J; Xiang X; Chiang A; Broweleit R; Vöhringer-Martinez E; Mochly-Rosen D; Wakatsuki S Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33468660 [TBL] [Abstract][Full Text] [Related]
20. The structure and activity of the glutathione reductase from Streptococcus pneumoniae. Sikanyika M; Aragão D; McDevitt CA; Maher MJ Acta Crystallogr F Struct Biol Commun; 2019 Jan; 75(Pt 1):54-61. PubMed ID: 30605126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]