These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28471638)

  • 1. Harnessing Supramolecular and Peptidic Self-Assembly for the Construction of Reinforced Polymeric Tissue Scaffolds.
    Thompson CB; Korley LTJ
    Bioconjug Chem; 2017 May; 28(5):1325-1339. PubMed ID: 28471638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications.
    Lu J; Wang X
    Adv Exp Med Biol; 2018; 1064():297-312. PubMed ID: 30471040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crafting Polymeric and Peptidic Hydrogels for Improved Wound Healing.
    Stern D; Cui H
    Adv Healthc Mater; 2019 May; 8(9):e1900104. PubMed ID: 30835960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-Based Hydrogels for Tissue Engineering.
    Schloss AC; Williams DM; Regan LJ
    Adv Exp Med Biol; 2016; 940():167-177. PubMed ID: 27677513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofunctionalisation of polymeric scaffolds for neural tissue engineering.
    Wang TY; Forsythe JS; Parish CL; Nisbet DR
    J Biomater Appl; 2012 Nov; 27(4):369-90. PubMed ID: 22492199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic Formation of an Injectable Hydrogel from a Glycopeptide as a Biomimetic Scaffold for Vascularization.
    Qi J; Yan Y; Cheng B; Deng L; Shao Z; Sun Z; Li X
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6180-6189. PubMed ID: 29380599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral fiber supramolecular hydrogels for tissue engineering.
    Wang X; Feng C
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Mar; 15(2):e1847. PubMed ID: 36003042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrous protein-based hydrogels for cell encapsulation.
    Silva R; Fabry B; Boccaccini AR
    Biomaterials; 2014 Aug; 35(25):6727-38. PubMed ID: 24836951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications.
    Loo Y; Hauser CA
    Biomed Mater; 2015 Dec; 11(1):014103. PubMed ID: 26694103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Hydrogel Materials for Biomedical Applications.
    Yang JM; Olanrele OS; Zhang X; Hsu CC
    Adv Exp Med Biol; 2018; 1077():197-224. PubMed ID: 30357691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions.
    Eslahi N; Abdorahim M; Simchi A
    Biomacromolecules; 2016 Nov; 17(11):3441-3463. PubMed ID: 27775329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular hydrogels inspired by collagen for tissue engineering.
    Hu Y; Wang H; Wang J; Wang S; Liao W; Yang Y; Zhang Y; Kong D; Yang Z
    Org Biomol Chem; 2010 Jul; 8(14):3267-71. PubMed ID: 20502821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres.
    Xue B; Bashir Z; Guo Y; Yu W; Sun W; Li Y; Zhang Y; Qin M; Wang W; Cao Y
    Nat Commun; 2023 May; 14(1):2583. PubMed ID: 37142590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.
    Henke M; Baumer J; Blunk T; Tessmar J
    J Tissue Eng Regen Med; 2014 Mar; 8(3):248-52. PubMed ID: 22718564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospects of Natural Polymeric Scaffolds in Peripheral Nerve Tissue-Regeneration.
    Ashraf R; Sofi HS; Beigh MA; Majeed S; Arjamand S; Sheikh FA
    Adv Exp Med Biol; 2018; 1077():501-525. PubMed ID: 30357706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications.
    Hao Z; Li H; Wang Y; Hu Y; Chen T; Zhang S; Guo X; Cai L; Li J
    Adv Sci (Weinh); 2022 Apr; 9(11):e2103820. PubMed ID: 35128831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the TEMPO-Oxidized Nanofibrillar Cellulose and Short Ionic-Complementary Peptide Composite Hydrogel as Biofunctional Cellular Scaffolds.
    Sharma P; Pal VK; Kaur H; Roy S
    Biomacromolecules; 2022 Jun; 23(6):2496-2511. PubMed ID: 35522599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of cross-linker chain length on the physical properties of polyampholyte hydrogels.
    Mariner E; Haag SL; Bernards MT
    Biointerphases; 2019 May; 14(3):031002. PubMed ID: 31122024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.