These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28471644)

  • 61. Measuring the electric charge and zeta potential of nanometer-sized objects using pyramidal-shaped nanopores.
    Arjmandi N; Van Roy W; Lagae L; Borghs G
    Anal Chem; 2012 Oct; 84(20):8490-6. PubMed ID: 22901005
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecular dynamics simulations of a calmodulin-peptide complex in solution.
    Yang C; Kuczera K
    J Biomol Struct Dyn; 2002 Oct; 20(2):179-97. PubMed ID: 12354070
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Graphene Nanopores for Electronic Recognition of DNA Methylation.
    Sarathy A; Qiu H; Leburton JP
    J Phys Chem B; 2017 Apr; 121(15):3757-3763. PubMed ID: 28035832
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Molecular dynamics study of a calmodulin-like protein with an IQ peptide: spontaneous refolding of the protein around the peptide.
    Ganoth A; Nachliel E; Friedman R; Gutman M
    Proteins; 2006 Jul; 64(1):133-46. PubMed ID: 16568447
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Conductance-based profiling of nanopores: Accommodating fabrication irregularities.
    Bandara YMNDY; Nichols JW; Iroshika Karawdeniya B; Dwyer JR
    Electrophoresis; 2018 Feb; 39(4):626-634. PubMed ID: 29131359
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Computational investigation on DNA sequencing using functionalized graphene nanopores.
    Yu YS; Lu X; Ding HM; Ma YQ
    Phys Chem Chem Phys; 2018 Apr; 20(14):9063-9069. PubMed ID: 29446423
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Capture and translocation of a rod-like molecule by a nanopore: orientation, charge distribution and hydrodynamics.
    Qiao L; Slater GW
    Phys Chem Chem Phys; 2022 Mar; 24(11):6444-6452. PubMed ID: 35244666
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of Ca2+ on the promiscuous target-protein binding of calmodulin.
    Westerlund AM; Delemotte L
    PLoS Comput Biol; 2018 Apr; 14(4):e1006072. PubMed ID: 29614072
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The complex folding network of single calmodulin molecules.
    Stigler J; Ziegler F; Gieseke A; Gebhardt JC; Rief M
    Science; 2011 Oct; 334(6055):512-6. PubMed ID: 22034433
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ion exclusion and electrokinetic effects resulting from electro-osmotic flow of salt solutions in charged silica nanopores.
    Haria NR; Lorenz CD
    Phys Chem Chem Phys; 2012 May; 14(17):5935-44. PubMed ID: 22441317
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Conformational substates of calmodulin revealed by single-pair fluorescence resonance energy transfer: influence of solution conditions and oxidative modification.
    Slaughter BD; Unruh JR; Allen MW; Bieber Urbauer RJ; Johnson CK
    Biochemistry; 2005 Mar; 44(10):3694-707. PubMed ID: 15751946
    [TBL] [Abstract][Full Text] [Related]  

  • 72. DNA Translocation in Nanometer Thick Silicon Nanopores.
    Rodríguez-Manzo JA; Puster M; Nicolaï A; Meunier V; Drndić M
    ACS Nano; 2015 Jun; 9(6):6555-64. PubMed ID: 26035079
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dynamic structure of the calmodulin-binding domain of the plasma membrane Ca-ATPase in native erythrocyte ghost membranes.
    Yao Y; Gao J; Squier TC
    Biochemistry; 1996 Sep; 35(37):12015-28. PubMed ID: 8810906
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Protein Transport through Nanopores Illuminated by Long-Time-Scale Simulations.
    Mitscha-Baude G; Stadlbauer B; Howorka S; Heitzinger C
    ACS Nano; 2021 Jun; 15(6):9900-9912. PubMed ID: 34096722
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structure and dynamics of calmodulin in solution.
    Wriggers W; Mehler E; Pitici F; Weinstein H; Schulten K
    Biophys J; 1998 Apr; 74(4):1622-39. PubMed ID: 9545028
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Understanding Electrophoresis and Electroosmosis in Nanopore Sensing with the Help of the Nanopore Electro-Osmotic Trap.
    Wen C; Schmid S; Dekker C
    ACS Nano; 2024 Jul; 18(31):20449-58. PubMed ID: 39051760
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nanopore translocation reveals electrophoretic force on non-canonical RNA:DNA double helix.
    Bošković F; Maffeo C; Patiño-Guillén G; Tivony R; Aksimentiev A; Keyser UF
    bioRxiv; 2024 May; ():. PubMed ID: 37745457
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Efficient and verified simulation of a path ensemble for conformational change in a united-residue model of calmodulin.
    Zhang BW; Jasnow D; Zuckerman DM
    Proc Natl Acad Sci U S A; 2007 Nov; 104(46):18043-8. PubMed ID: 17984047
    [TBL] [Abstract][Full Text] [Related]  

  • 79. InfleCS: Clustering Free Energy Landscapes with Gaussian Mixtures.
    Westerlund AM; Delemotte L
    J Chem Theory Comput; 2019 Dec; 15(12):6752-6759. PubMed ID: 31647864
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Encoding Manipulation of DNA-Nanoparticle Assembled Nanorobot Using Independently Charged Array Nanopores.
    Si W; Zhu Z; Wu G; Zhang Y; Chen Y; Sha J
    Small Methods; 2022 Aug; 6(8):e2200318. PubMed ID: 35656741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.