These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28471678)

  • 41. Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes.
    Wang W; Ruiz I; Ahmed K; Bay HH; George AS; Wang J; Butler J; Ozkan M; Ozkan CS
    Small; 2014 Aug; 10(16):3389-96. PubMed ID: 24753292
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Superior and Reversible Lithium Storage of SnO
    Ao L; Wu C; Wang X; Xu Y; Jiang K; Shang L; Li Y; Zhang J; Hu Z; Chu J
    ACS Appl Mater Interfaces; 2020 May; 12(18):20824-20837. PubMed ID: 32282187
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes.
    Higgins TM; Park SH; King PJ; Zhang CJ; McEvoy N; Berner NC; Daly D; Shmeliov A; Khan U; Duesberg G; Nicolosi V; Coleman JN
    ACS Nano; 2016 Mar; 10(3):3702-13. PubMed ID: 26937766
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes.
    Jia H; Li X; Song J; Zhang X; Luo L; He Y; Li B; Cai Y; Hu S; Xiao X; Wang C; Rosso KM; Yi R; Patel R; Zhang JG
    Nat Commun; 2020 Mar; 11(1):1474. PubMed ID: 32193387
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density.
    Son IH; Hwan Park J; Kwon S; Park S; Rümmeli MH; Bachmatiuk A; Song HJ; Ku J; Choi JW; Choi JM; Doo SG; Chang H
    Nat Commun; 2015 Jun; 6():7393. PubMed ID: 26109057
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Facile approach to SiO(x)/Si/C composite anode material from bulk SiO for lithium ion batteries.
    Feng X; Yang J; Lu Q; Wang J; Nuli Y
    Phys Chem Chem Phys; 2013 Sep; 15(34):14420-6. PubMed ID: 23892933
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultrathin Nitrogen-Doped Carbon Layer Uniformly Supported on Graphene Frameworks as Ultrahigh-Capacity Anode for Lithium-Ion Full Battery.
    Huang Y; Li K; Yang G; Aboud MFA; Shakir I; Xu Y
    Small; 2018 Mar; 14(13):e1703969. PubMed ID: 29363874
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rice husk-originating silicon-graphite composites for advanced lithium ion battery anodes.
    Kim HJ; Choi JH; Choi JW
    Nano Converg; 2017; 4(1):24. PubMed ID: 28983451
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hollow Graphene as an Expansion-Inhibiting Electrical Interconnector for Silicon Electrodes in Lithium-Ion Batteries.
    Park HI; Park YK; Kim SK; Jang HD; Kim H
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35759-35766. PubMed ID: 34289303
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enabling SiO
    Yan MY; Li G; Zhang J; Tian YF; Yin YX; Zhang CJ; Jiang KC; Xu Q; Li HL; Guo YG
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27202-27209. PubMed ID: 32436378
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hybrid Cellular Nanosheets for High-Performance Lithium-Ion Battery Anodes.
    Yu SH; Lee DJ; Park M; Kwon SG; Lee HS; Jin A; Lee KS; Lee JE; Oh MH; Kang K; Sung YE; Hyeon T
    J Am Chem Soc; 2015 Sep; 137(37):11954-61. PubMed ID: 26329036
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improving the performance of silicon monoxide anodes
    Xie W; Pang C; He P; Xiao C; Koyama M; Wang J; Qi X; Ren J; He X
    Phys Chem Chem Phys; 2022 Mar; 24(12):7405-7414. PubMed ID: 35266492
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Organic molecule confinement reaction for preparation of the Sn nanoparticles@graphene anode materials in Lithium-ion battery.
    Ding S; Cheng W; Zhang L; Du G; Hao X; Nie G; Xu B; Zhang M; Su Q; Serra CA
    J Colloid Interface Sci; 2021 May; 589():308-317. PubMed ID: 33472150
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes.
    Kim GT; Kennedy T; Brandon M; Geaney H; Ryan KM; Passerini S; Appetecchi GB
    ACS Nano; 2017 Jun; 11(6):5933-5943. PubMed ID: 28530820
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes.
    Luo J; Zhao X; Wu J; Jang HD; Kung HH; Huang J
    J Phys Chem Lett; 2012 Jul; 3(13):1824-9. PubMed ID: 26291867
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conversion Reaction of Nanoporous ZnO for Stable Electrochemical Cycling of Binderless Si Microparticle Composite Anode.
    Kim D; Park M; Kim SM; Shim HC; Hyun S; Han SM
    ACS Nano; 2018 Nov; 12(11):10903-10913. PubMed ID: 30179496
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries.
    Assegie AA; Chung CC; Tsai MC; Su WN; Chen CW; Hwang BJ
    Nanoscale; 2019 Feb; 11(6):2710-2720. PubMed ID: 30672549
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Abnormal cyclibility in Ni@graphene core-shell and yolk-shell nanostructures for lithium ion battery anodes.
    Song H; Cui H; Wang C
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13765-9. PubMed ID: 25004444
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Graphene Caging Silicon Particles for High-Performance Lithium-Ion Batteries.
    Nie P; Le Z; Chen G; Liu D; Liu X; Wu HB; Xu P; Li X; Liu F; Chang L; Zhang X; Lu Y
    Small; 2018 Jun; 14(25):e1800635. PubMed ID: 29806226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.