These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 2847174)
41. Preparation and characterization of fluorescent scorpion toxins from Leiurus quinquestriatus quinquestriatus as probes of the sodium channel of excitable cells. Angelides KJ; Nutter TJ J Biol Chem; 1983 Oct; 258(19):11948-57. PubMed ID: 6311830 [TBL] [Abstract][Full Text] [Related]
42. Mammalian skeletal muscle voltage-gated sodium channels are affected by scorpion depressant "insect-selective" toxins when preconditioned. Cohen L; Troub Y; Turkov M; Gilles N; Ilan N; Benveniste M; Gordon D; Gurevitz M Mol Pharmacol; 2007 Nov; 72(5):1220-7. PubMed ID: 17720763 [TBL] [Abstract][Full Text] [Related]
43. Phosphorylation of the alpha subunit of rat brain sodium channels by cAMP-dependent protein kinase at a new site containing Ser686 and Ser687. Rossie S; Catterall WA J Biol Chem; 1989 Aug; 264(24):14220-4. PubMed ID: 2547790 [TBL] [Abstract][Full Text] [Related]
44. A spider toxin that induces a typical effect of scorpion alpha-toxins but competes with beta-toxins on binding to insect sodium channels. Corzo G; Escoubas P; Villegas E; Karbat I; Gordon D; Gurevitz M; Nakajima T; Gilles N Biochemistry; 2005 Feb; 44(5):1542-9. PubMed ID: 15683238 [TBL] [Abstract][Full Text] [Related]
45. Study of the binding residues between ANEPII and insect sodium channel receptor. Song YB; Ma L; Yang WY; Wang J; Cheng MS; Wu CF; Zhang JH C R Biol; 2010 Sep; 333(9):637-41. PubMed ID: 20816643 [TBL] [Abstract][Full Text] [Related]
46. Direct evidence that receptor site-4 of sodium channel gating modifiers is not dipped in the phospholipid bilayer of neuronal membranes. Cohen L; Gilles N; Karbat I; Ilan N; Gordon D; Gurevitz M J Biol Chem; 2006 Jul; 281(30):20673-20679. PubMed ID: 16720570 [TBL] [Abstract][Full Text] [Related]
47. Molecular mechanisms of gating and drug block of sodium channels. Catterall WA Novartis Found Symp; 2002; 241():206-18; discussion 218-32. PubMed ID: 11771647 [TBL] [Abstract][Full Text] [Related]
48. Exploration of the functional site of a scorpion alpha-like toxin by site-directed mutagenesis. Wang CG; Gilles N; Hamon A; Le Gall F; Stankiewicz M; Pelhate M; Xiong YM; Wang DC; Chi CW Biochemistry; 2003 Apr; 42(16):4699-708. PubMed ID: 12705833 [TBL] [Abstract][Full Text] [Related]
49. Identification of 1,4-dihydropyridine binding regions within the alpha 1 subunit of skeletal muscle Ca2+ channels by photoaffinity labeling with diazipine. Nakayama H; Taki M; Striessnig J; Glossmann H; Catterall WA; Kanaoka Y Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9203-7. PubMed ID: 1656465 [TBL] [Abstract][Full Text] [Related]
50. Subtype specificity of scorpion beta-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain 3. Leipold E; Hansel A; Borges A; Heinemann SH Mol Pharmacol; 2006 Jul; 70(1):340-7. PubMed ID: 16638971 [TBL] [Abstract][Full Text] [Related]
51. Two recombinant α-like scorpion toxins from Mesobuthus eupeus with differential affinity toward insect and mammalian Na(+) channels. Zhu L; Peigneur S; Gao B; Tytgat J; Zhu S Biochimie; 2013 Sep; 95(9):1732-40. PubMed ID: 23743216 [TBL] [Abstract][Full Text] [Related]
52. Isolation and characterization of two novel scorpion toxins: The alpha-toxin-like CeII8, specific for Na(v)1.7 channels and the classical anti-mammalian CeII9, specific for Na(v)1.4 channels. Vandendriessche T; Olamendi-Portugal T; Zamudio FZ; Possani LD; Tytgat J Toxicon; 2010 Sep; 56(4):613-23. PubMed ID: 20600228 [TBL] [Abstract][Full Text] [Related]
53. The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical beta subunits. Hartshorne RP; Messner DJ; Coppersmith JC; Catterall WA J Biol Chem; 1982 Dec; 257(23):13888-91. PubMed ID: 6292214 [TBL] [Abstract][Full Text] [Related]
54. The interaction between a Na+-channel toxin and brain microtubule proteins in vitro. Hargreaves AJ; Montejo de Garcini E; Avila J Brain Res; 1986 Jul; 387(1):43-51. PubMed ID: 2427170 [TBL] [Abstract][Full Text] [Related]
55. Electron microscopic evidence for scorpion toxin binding to synapses of rat brain cortex. Trejo AC; Possani LD Neurosci Lett; 1982 Oct; 32(2):103-8. PubMed ID: 7145231 [TBL] [Abstract][Full Text] [Related]
56. Biochemical properties of sodium channels in a wide range of excitable tissues studied with site-directed antibodies. Gordon D; Merrick D; Wollner DA; Catterall WA Biochemistry; 1988 Sep; 27(18):7032-8. PubMed ID: 2848576 [TBL] [Abstract][Full Text] [Related]
57. A topographical study of the electroplax sodium channel with site-directed antibodies. Nakayama H; Nakayama K; Nonomura Y; Kobayashi M; Kangawa K; Matsuo H; Kanaoka Y Biochim Biophys Acta; 1993 Jan; 1145(1):134-40. PubMed ID: 8380715 [TBL] [Abstract][Full Text] [Related]
58. Structural inferences for the native skeletal muscle sodium channel as derived from patterns of endogenous proteolysis. Kraner S; Yang J; Barchi R J Biol Chem; 1989 Aug; 264(22):13273-80. PubMed ID: 2546950 [TBL] [Abstract][Full Text] [Related]
59. Beta 1 subunits of sodium channels. Studies with subunit-specific antibodies. Sutkowski EM; Catterall WA J Biol Chem; 1990 Jul; 265(21):12393-9. PubMed ID: 2165060 [TBL] [Abstract][Full Text] [Related]
60. Photoaffinity labeling of the electroplax sodium channel with tetrodotoxin derivatives. II. Comparison of the photoreactivity of different photoactivable groups in the tetrodotoxin binding site. Yoshida E; Nakayama H; Hatanaka Y; Kanaoka Y Chem Pharm Bull (Tokyo); 1990 Apr; 38(4):982-7. PubMed ID: 2165874 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]