These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28471754)

  • 21. Surface and Interface Designs in Copper-Based Conductive Inks for Printed/Flexible Electronics.
    Tomotoshi D; Kawasaki H
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32867267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polymer Surface Engineering for Efficient Printing of Highly Conductive Metal Nanoparticle Inks.
    Agina EV; Sizov AS; Yablokov MY; Borshchev OV; Bessonov AA; Kirikova MN; Bailey MJ; Ponomarenko SA
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11755-64. PubMed ID: 25984650
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nano-Silver Ink of High Conductivity and Low Sintering Temperature for Paper Electronics.
    Mo L; Guo Z; Wang Z; Yang L; Fang Y; Xin Z; Li X; Chen Y; Cao M; Zhang Q; Li L
    Nanoscale Res Lett; 2019 Jun; 14(1):197. PubMed ID: 31172304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications.
    Tran TS; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2018 Nov; 261():41-61. PubMed ID: 30318342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective laser sintering of inkjet-printed silver nanoparticle inks on paper substrates to achieve highly conductive patterns.
    Balliu E; Andersson H; Engholm M; Öhlund T; Nilsson HE; Olin H
    Sci Rep; 2018 Jul; 8(1):10408. PubMed ID: 29991735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conductivity and radio frequency performance data for silver nanoparticle inks deposited via aerosol jet deposition and processed under varying conditions.
    Deneault JR; Bartsch C; Cook A; Grabowski C; Berrigan JD; Glavin N; Buskohl PR
    Data Brief; 2020 Dec; 33():106331. PubMed ID: 33088870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electroless Deposition-Assisted 3D Printing of Micro Circuitries for Structural Electronics.
    Lee S; Wajahat M; Kim JH; Pyo J; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7123-7130. PubMed ID: 30681321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly conductive electronics circuits from aerosol jet printed silver inks.
    Skarżyński K; Krzemiński J; Jakubowska M; Słoma M
    Sci Rep; 2021 Sep; 11(1):18141. PubMed ID: 34518558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene-Ag nanohexagonal platelets-based ink with high electrical properties at low sintering temperatures.
    Liu P; Ma J; Deng S; Zeng K; Deng D; Xie W; Lu A
    Nanotechnology; 2016 Sep; 27(38):385603. PubMed ID: 27518607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasma-Induced Decomposition of Copper Complex Ink for the Formation of Highly Conductive Copper Tracks on Heat-Sensitive Substrates.
    Farraj Y; Smooha A; Kamyshny A; Magdassi S
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8766-8773. PubMed ID: 28229585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films.
    Pajor-Świerzy A; Socha R; Pawłowski R; Warszyński P; Szczepanowicz K
    Nanotechnology; 2019 May; 30(22):225301. PubMed ID: 30721883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silver Nanowires Inks for Flexible Circuit on Photographic Paper Substrate.
    Yang X; Du D; Wang Y; Zhao Y
    Micromachines (Basel); 2018 Dec; 10(1):. PubMed ID: 30597976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.
    Shen W; Zhang X; Huang Q; Xu Q; Song W
    Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conductive inks with a "built-in" mechanism that enables sintering at room temperature.
    Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S
    ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of the Deposition Morphology of Inkjet-Printed Crystalline Materials via Polydopamine Functional Coatings for Highly Uniform and Electrically Conductive Patterns.
    Liu L; Ma S; Pei Y; Xiong X; Sivakumar P; Singler TJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21750-61. PubMed ID: 27525496
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silver nanowire inks for direct-write electronic tattoo applications.
    Williams NX; Noyce S; Cardenas JA; Catenacci M; Wiley BJ; Franklin AD
    Nanoscale; 2019 Aug; 11(30):14294-14302. PubMed ID: 31318368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spray-coated nanoscale conductive patterns based on in situ sintered silver nanoparticle inks.
    Zheng Y; Li S; Shi W; Yu J
    Nanoscale Res Lett; 2014 Mar; 9(1):145. PubMed ID: 24666992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generating highly reflective and conductive metal layers through a light-assisted synthesis and assembling of silver nanoparticles in a polymer matrix.
    Zaier M; Vidal L; Hajjar-Garreau S; Balan L
    Sci Rep; 2017 Sep; 7(1):12410. PubMed ID: 28963491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.