BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28472077)

  • 1. Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening.
    Fan X; Wu H; Li G; Yuan H; Zhang H; Li Y; Xie X; Chen N
    PLoS One; 2017; 12(5):e0176545. PubMed ID: 28472077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improve uridine production by modifying related metabolic pathways in Bacillus subtilis.
    Zhang X; Wang C; Liu L; Ban R
    Biotechnol Lett; 2020 Apr; 42(4):551-555. PubMed ID: 31993847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of uridine production in Bacillus subtilis by metabolic engineering.
    Wang Y; Ma R; Liu L; He L; Ban R
    Biotechnol Lett; 2018 Jan; 40(1):151-155. PubMed ID: 29038923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin.
    Fan X; Wu H; Jia Z; Li G; Li Q; Chen N; Xie X
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8753-8762. PubMed ID: 30120523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic and genetic factors affecting the productivity of pyrimidine nucleoside in Bacillus subtilis.
    Zhu H; Yang SM; Yuan ZM; Ban R
    Microb Cell Fact; 2015 Apr; 14():54. PubMed ID: 25890046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Escherichia coli for high-yield uridine production.
    Wu H; Li Y; Ma Q; Li Q; Jia Z; Yang B; Xu Q; Fan X; Zhang C; Chen N; Xie X
    Metab Eng; 2018 Sep; 49():248-256. PubMed ID: 30189293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significantly improving the yield of recombinant proteins in Bacillus subtilis by a novel powerful mutagenesis tool (ARTP): Alkaline α-amylase as a case study.
    Ma Y; Yang H; Chen X; Sun B; Du G; Zhou Z; Song J; Fan Y; Shen W
    Protein Expr Purif; 2015 Oct; 114():82-8. PubMed ID: 26134659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of key-gene modification on uridine biosynthesis in Bacillus subtilis].
    Yang S; Guo L; Ban R; Xie X
    Wei Sheng Wu Xue Bao; 2016 Jan; 56(1):56-67. PubMed ID: 27305780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The selective breeding and mutagenesis mechanism of high-yielding surfactin Bacillus subtilis strains with atmospheric and room temperature plasma.
    Xu H; Dai C; Tang Y; Xu X; Umego EC; He R; Ma H
    J Sci Food Agric; 2022 Mar; 102(5):1851-1861. PubMed ID: 34464473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breeding L-arginine-producing strains by a novel mutagenesis method: Atmospheric and room temperature plasma (ARTP).
    Cheng G; Xu J; Xia X; Guo Y; Xu K; Su C; Zhang W
    Prep Biochem Biotechnol; 2016 Jul; 46(5):509-16. PubMed ID: 26460578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and Screening of High-Yielding α-Amylase Mutants of Bacillus subtilis by Heavy Ion Mutagenesis.
    Cui JN; Hu W; Liu YX; Li YL; Hu JH; Liu ZY; Chen JH
    Appl Biochem Biotechnol; 2023 Jan; 195(1):68-85. PubMed ID: 35969299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mutagenesis of Methylobacterium extorquens AM1 for increasing pyrroloquinoline quinone production by atmospheric and room temperature plasma].
    Li H; Kang Z; Li J; Zhou J; Du G
    Sheng Wu Gong Cheng Xue Bao; 2016 Aug; 32(8):1145-1149. PubMed ID: 29022315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydiacetylene-based high-throughput screen for surfactin producing strains of Bacillus subtilis.
    Zhu L; Xu Q; Jiang L; Huang H; Li S
    PLoS One; 2014; 9(2):e88207. PubMed ID: 24498439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced arachidonic acid production from Mortierella alpina combining atmospheric and room temperature plasma (ARTP) and diethyl sulfate treatments.
    Li X; Liu R; Li J; Chang M; Liu Y; Jin Q; Wang X
    Bioresour Technol; 2015 Feb; 177():134-40. PubMed ID: 25484124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Bacillus subtilis for high-level production of uridine from glucose.
    Wang C; Xu J; Ban R
    Lett Appl Microbiol; 2022 Oct; 75(4):824-830. PubMed ID: 35657030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation breeding of lycopene-producing strain Blakeslea trispora by a novel atmospheric and room temperature plasma (ARTP).
    Qiang W; Ling-ran F; Luo W; Han-guang L; Lin W; Ya Z; Xiao-bin Y
    Appl Biochem Biotechnol; 2014 Sep; 174(1):452-60. PubMed ID: 24903962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenesis of Rhodobacter sphaeroides using atmospheric and room temperature plasma treatment for efficient production of coenzyme Q10.
    Zou RS; Li S; Zhang LL; Zhang C; Han YJ; Gao G; Sun X; Gong X
    J Biosci Bioeng; 2019 Jun; 127(6):698-702. PubMed ID: 30709705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening the Fusarium graminearum inhibitory mutant strain from Bacillus subtilis by atmospheric-pressure plasma jet.
    Chen H; Chen ZJ; Wu MB; Deng SX
    J Appl Microbiol; 2010 Jan; 108(1):96-103. PubMed ID: 19558467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression.
    Li S; Wen J; Jia X
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):577-89. PubMed ID: 21533914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome shuffling and high-throughput screening of Brevibacterium flavum MDV1 for enhanced L-valine production.
    Huang QG; Zeng BD; Liang L; Wu SG; Huang JZ
    World J Microbiol Biotechnol; 2018 Jul; 34(8):121. PubMed ID: 30039311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.