These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28472125)

  • 1. Static and dynamic light scattering by red blood cells: A numerical study.
    Mauer J; Peltomäki M; Poblete S; Gompper G; Fedosov DA
    PLoS One; 2017; 12(5):e0176799. PubMed ID: 28472125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational analysis of dynamic interaction of two red blood cells in a capillary.
    Li H; Ye T; Lam KY
    Cell Biochem Biophys; 2014 Jul; 69(3):673-80. PubMed ID: 24590262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Enhanced Spring-Particle Model for Red Blood Cell Structural Mechanics: Application to the Stomatocyte-Discocyte-Echinocyte Transformation.
    Chen M; Boyle FJ
    J Biomech Eng; 2017 Dec; 139(12):. PubMed ID: 28813551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MD/DPD Multiscale Framework for Predicting Morphology and Stresses of Red Blood Cells in Health and Disease.
    Chang HY; Li X; Li H; Karniadakis GE
    PLoS Comput Biol; 2016 Oct; 12(10):e1005173. PubMed ID: 27792725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation.
    Yurkin MA; Semyanov KA; Tarasov PA; Chernyshev AV; Hoekstra AG; Maltsev VP
    Appl Opt; 2005 Sep; 44(25):5249-56. PubMed ID: 16149348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new membrane formulation for modelling the flow of stomatocyte, discocyte, and echinocyte red blood cells.
    Karandeniya DMW; Holmes DW; Sauret E; Gu YT
    Biomech Model Mechanobiol; 2022 Jun; 21(3):899-917. PubMed ID: 35412191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.
    Hashemi Z; Rahnama M
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method.
    Bi L; Yang P
    J Biomed Opt; 2013 May; 18(5):55001. PubMed ID: 23652343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography.
    Tang J; Erdener SE; Li B; Fu B; Sakadzic S; Carp SA; Lee J; Boas DA
    J Biophotonics; 2018 Feb; 11(2):. PubMed ID: 28700129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-Induced Transitions of Red Blood Cell Shapes under Shear.
    Mauer J; Mendez S; Lanotte L; Nicoud F; Abkarian M; Gompper G; Fedosov DA
    Phys Rev Lett; 2018 Sep; 121(11):118103. PubMed ID: 30265089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of spectrin network elasticity on the shapes of erythrocyte doublets.
    Hoore M; Yaya F; Podgorski T; Wagner C; Gompper G; Fedosov DA
    Soft Matter; 2018 Aug; 14(30):6278-6289. PubMed ID: 30014074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulations of deformation and aggregation of red blood cells in shear flow.
    Low HT; Ju M; Sui Y; Nazir T; Namgung B; Kim S
    Crit Rev Biomed Eng; 2013; 41(4-5):425-34. PubMed ID: 24941417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of the dynamic properties of the human red blood cell membrane using quasi-elastic light-scattering spectroscopy.
    Tishler RB; Carlson FD
    Biophys J; 1993 Dec; 65(6):2586-600. PubMed ID: 8312494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical clustering of red blood cells in capillary vessels.
    Boryczko K; Dzwinel W; Yuen DA
    J Mol Model; 2003 Feb; 9(1):16-33. PubMed ID: 12638008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic energy of the discocyte-stomatocyte transformation.
    Muñoz S; Sebastián JL; Sancho M; Alvarez G
    Biochim Biophys Acta; 2014 Mar; 1838(3):950-6. PubMed ID: 24192054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability.
    Reichel F; Mauer J; Nawaz AA; Gompper G; Guck J; Fedosov DA
    Biophys J; 2019 Jul; 117(1):14-24. PubMed ID: 31235179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.