These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28472263)

  • 41. COUSCOus: improved protein contact prediction using an empirical Bayes covariance estimator.
    Rawi R; Mall R; Kunji K; El Anbari M; Aupetit M; Ullah E; Bensmail H
    BMC Bioinformatics; 2016 Dec; 17(1):533. PubMed ID: 27978812
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessment of protein assembly prediction in CASP12.
    Lafita A; Bliven S; Kryshtafovych A; Bertoni M; Monastyrskyy B; Duarte JM; Schwede T; Capitani G
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):247-256. PubMed ID: 29071742
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2018 Dec; 34(23):4039-4045. PubMed ID: 29931279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deep architectures for protein contact map prediction.
    Di Lena P; Nagata K; Baldi P
    Bioinformatics; 2012 Oct; 28(19):2449-57. PubMed ID: 22847931
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of distance-based protein structure prediction by deep learning in CASP13.
    Xu J; Wang S
    Proteins; 2019 Dec; 87(12):1069-1081. PubMed ID: 31471916
    [TBL] [Abstract][Full Text] [Related]  

  • 46. FilterDCA: Interpretable supervised contact prediction using inter-domain coevolution.
    Muscat M; Croce G; Sarti E; Weigt M
    PLoS Comput Biol; 2020 Oct; 16(10):e1007621. PubMed ID: 33035205
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks.
    Walsh I; Baù D; Martin AJ; Mooney C; Vullo A; Pollastri G
    BMC Struct Biol; 2009 Jan; 9():5. PubMed ID: 19183478
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using multi-data hidden Markov models trained on local neighborhoods of protein structure to predict residue-residue contacts.
    Björkholm P; Daniluk P; Kryshtafovych A; Fidelis K; Andersson R; Hvidsten TR
    Bioinformatics; 2009 May; 25(10):1264-70. PubMed ID: 19289446
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting accurate contacts in thousands of Pfam domain families using PconsC3.
    Michel M; Skwark MJ; Menéndez Hurtado D; Ekeberg M; Elofsson A
    Bioinformatics; 2017 Sep; 33(18):2859-2866. PubMed ID: 28535189
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessment of hard target modeling in CASP12 reveals an emerging role of alignment-based contact prediction methods.
    Abriata LA; Tamò GE; Monastyrskyy B; Kryshtafovych A; Dal Peraro M
    Proteins; 2018 Mar; 86 Suppl 1():97-112. PubMed ID: 29139163
    [TBL] [Abstract][Full Text] [Related]  

  • 52. When homologous sequences meet structural decoys: Accurate contact prediction by tFold in CASP14-(tFold for CASP14 contact prediction).
    Shen T; Wu J; Lan H; Zheng L; Pei J; Wang S; Liu W; Huang J
    Proteins; 2021 Dec; 89(12):1901-1910. PubMed ID: 34473376
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks.
    Liu Y; Palmedo P; Ye Q; Berger B; Peng J
    Cell Syst; 2018 Jan; 6(1):65-74.e3. PubMed ID: 29275173
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicting protein residue-residue contacts using deep networks and boosting.
    Eickholt J; Cheng J
    Bioinformatics; 2012 Dec; 28(23):3066-72. PubMed ID: 23047561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting RNA distance-based contact maps by integrated deep learning on physics-inferred secondary structure and evolutionary-derived mutational coupling.
    Singh J; Paliwal K; Litfin T; Singh J; Zhou Y
    Bioinformatics; 2022 Aug; 38(16):3900-3910. PubMed ID: 35751593
    [TBL] [Abstract][Full Text] [Related]  

  • 56. FALCON@home: a high-throughput protein structure prediction server based on remote homologue recognition.
    Wang C; Zhang H; Zheng WM; Xu D; Zhu J; Wang B; Ning K; Sun S; Li SC; Bu D
    Bioinformatics; 2016 Feb; 32(3):462-4. PubMed ID: 26454278
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The evolution of contact prediction: evidence that contact selection in statistical contact prediction is changing.
    Chonofsky M; de Oliveira SHP; Krawczyk K; Deane CM
    Bioinformatics; 2020 Mar; 36(6):1750-1756. PubMed ID: 31693112
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Topology Prediction Improvement of α-helical Transmembrane Proteins Through Helix-tail Modeling and Multiscale Deep Learning Fusion.
    Feng SH; Zhang WX; Yang J; Yang Y; Shen HB
    J Mol Biol; 2020 Feb; 432(4):1279-1296. PubMed ID: 31870850
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.
    Zhu J; Zhang H; Li SC; Wang C; Kong L; Sun S; Zheng WM; Bu D
    Bioinformatics; 2017 Dec; 33(23):3749-3757. PubMed ID: 28961795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.