BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 28472398)

  • 1. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
    Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH
    Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-binding specificities of human transcription factors.
    Jolma A; Yan J; Whitington T; Toivonen J; Nitta KR; Rastas P; Morgunova E; Enge M; Taipale M; Wei G; Palin K; Vaquerizas JM; Vincentelli R; Luscombe NM; Hughes TR; Lemaire P; Ukkonen E; Kivioja T; Taipale J
    Cell; 2013 Jan; 152(1-2):327-39. PubMed ID: 23332764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular discovery of monomeric and dimeric transcription factor binding motifs for large data sets.
    Toivonen J; Kivioja T; Jolma A; Yin Y; Taipale J; Ukkonen E
    Nucleic Acids Res; 2018 May; 46(8):e44. PubMed ID: 29385521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells.
    Wong KC; Li Y; Peng C
    Bioinformatics; 2016 Feb; 32(3):321-4. PubMed ID: 26411866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SELEX-Seq: A Method to Determine DNA Binding Specificities of Plant Transcription Factors.
    Smaczniak C; Angenent GC; Kaufmann K
    Methods Mol Biol; 2017; 1629():67-82. PubMed ID: 28623580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Protein Production Combined with High- Throughput SELEX Identifies an Extensive Atlas of Ciona robusta Transcription Factor DNA-Binding Specificities.
    Nitta KR; Vincentelli R; Jacox E; Cimino A; Ohtsuka Y; Sobral D; Satou Y; Cambillau C; Lemaire P
    Methods Mol Biol; 2019; 2025():487-517. PubMed ID: 31267468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Co-Associated Transcription Factors via Ordered Adjacency Differences on Motif Distribution.
    Pan G; Tang J; Guo F
    Sci Rep; 2017 Feb; 7():43597. PubMed ID: 28240320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of chromatin and transcriptional co-regulators in mediating p63-genome interactions in keratinocytes.
    Sethi I; Sinha S; Buck MJ
    BMC Genomics; 2014 Nov; 15(1):1042. PubMed ID: 25433490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A widespread role of the motif environment in transcription factor binding across diverse protein families.
    Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y
    Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R; Murphy KF; McCord RP; Zhu C; Vedenko A; Bulyk ML
    Genome Biol; 2011 Dec; 12(12):R125. PubMed ID: 22189060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework.
    Yang J; Ma A; Hoppe AD; Wang C; Li Y; Zhang C; Wang Y; Liu B; Ma Q
    Nucleic Acids Res; 2019 Sep; 47(15):7809-7824. PubMed ID: 31372637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BEESEM: estimation of binding energy models using HT-SELEX data.
    Ruan S; Swamidass SJ; Stormo GD
    Bioinformatics; 2017 Aug; 33(15):2288-2295. PubMed ID: 28379348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of DNA binding motifs from 3D models of transcription factors; identifying TLX3 regulated genes.
    Pujato M; Kieken F; Skiles AA; Tapinos N; Fiser A
    Nucleic Acids Res; 2014 Dec; 42(22):13500-12. PubMed ID: 25428367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [DNA-binding profiles of mammalian transcription factors].
    Gu GM; Wang JK
    Yi Chuan; 2012 Aug; 34(8):950-68. PubMed ID: 22917900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative modeling of transcription factor binding specificities using DNA shape.
    Zhou T; Shen N; Yang L; Abe N; Horton J; Mann RS; Bussemaker HJ; Gordân R; Rohs R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4654-9. PubMed ID: 25775564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic identification of non-canonical transcription factor motifs.
    Chumpitaz-Diaz L; Samee MAH; Pollard KS
    BMC Mol Cell Biol; 2021 Aug; 22(1):44. PubMed ID: 34465294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.