BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28472433)

  • 1. Exploring spatially adjacent TFBS-clustered regions with Hi-C data.
    Chen H; Jiang S; Zhang Z; Li H; Lu Y; Bo X
    Bioinformatics; 2017 Sep; 33(17):2611-2614. PubMed ID: 28472433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrative analysis of TFBS-clustered regions reveals new transcriptional regulation models on the accessible chromatin landscape.
    Chen H; Li H; Liu F; Zheng X; Wang S; Bo X; Shu W
    Sci Rep; 2015 Feb; 5():8465. PubMed ID: 25682954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mixture model-based discriminate analysis for identifying ordered transcription factor binding site pairs in gene promoters directly regulated by estrogen receptor-alpha.
    Li L; Cheng AS; Jin VX; Paik HH; Fan M; Li X; Zhang W; Robarge J; Balch C; Davuluri RV; Kim S; Huang TH; Nephew KP
    Bioinformatics; 2006 Sep; 22(18):2210-6. PubMed ID: 16809387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TEMPLE: analysing population genetic variation at transcription factor binding sites.
    Litovchenko M; Laurent S
    Mol Ecol Resour; 2016 Nov; 16(6):1428-1434. PubMed ID: 27106869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression.
    Murakami K; Kojima T; Sakaki Y
    BMC Genomics; 2004 Feb; 5(1):16. PubMed ID: 15053842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA.
    Polavarapu N; Mariño-Ramírez L; Landsman D; McDonald JF; Jordan IK
    BMC Genomics; 2008 May; 9():226. PubMed ID: 18485226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying functional transcription factor binding sites in yeast by considering their positional preference in the promoters.
    Lai FJ; Chiu CC; Yang TH; Huang YM; Wu WS
    PLoS One; 2013; 8(12):e83791. PubMed ID: 24386279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Base-pair resolution detection of transcription factor binding site by deep deconvolutional network.
    Salekin S; Zhang JM; Huang Y
    Bioinformatics; 2018 Oct; 34(20):3446-3453. PubMed ID: 29757349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic identification and annotation of multiple-variant compound effects at transcription factor binding sites in human genome.
    Cheng SJ; Jiang S; Shi FY; Ding Y; Gao G
    J Genet Genomics; 2018 Jul; 45(7):373-379. PubMed ID: 30054217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. dPattern: transcription factor binding site (TFBS) discovery in human genome using a discriminative pattern analysis.
    Bae SH; Tang H; Wu J; Xie J; Kim S
    Bioinformatics; 2007 Oct; 23(19):2619-21. PubMed ID: 17550915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A regulatory similarity measure using the location information of transcription factor binding sites in Saccharomyces cerevisiae.
    Wu WS; Wei ML; Yeh CM; Chang DT
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S9. PubMed ID: 25560196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary Conserved Motif Finder (ECMFinder) for genome-wide identification of clustered YY1- and CTCF-binding sites.
    Kang K; Chung JH; Kim J
    Nucleic Acids Res; 2009 Apr; 37(6):2003-13. PubMed ID: 19208640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling of Human Molecular Pathways Affected by Retrotransposons at the Level of Regulation by Transcription Factor Proteins.
    Nikitin D; Penzar D; Garazha A; Sorokin M; Tkachev V; Borisov N; Poltorak A; Prassolov V; Buzdin AA
    Front Immunol; 2018; 9():30. PubMed ID: 29441061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide transcription factor binding site/promoter databases for the analysis of gene sets and co-occurrence of transcription factor binding motifs.
    Veerla S; Ringnér M; Höglund M
    BMC Genomics; 2010 Mar; 11():145. PubMed ID: 20193056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting ancestral mammalian genomes for the prediction of human transcription factor binding sites.
    Blanchette M
    BMC Bioinformatics; 2012; 13 Suppl 19(Suppl 19):S2. PubMed ID: 23281809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative analysis identifies co-dependent gene expression regulation of BRG1 and CHD7 at distal regulatory sites in embryonic stem cells.
    Yang P; Oldfield A; Kim T; Yang A; Yang JYH; Ho JWK
    Bioinformatics; 2017 Jul; 33(13):1916-1920. PubMed ID: 28203701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network.
    Hosseinpour B; Bakhtiarizadeh MR; Khosravi P; Ebrahimie E
    Gene; 2013 Dec; 531(2):212-9. PubMed ID: 24042128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All and only CpG containing sequences are enriched in promoters abundantly bound by RNA polymerase II in multiple tissues.
    Rozenberg JM; Shlyakhtenko A; Glass K; Rishi V; Myakishev MV; FitzGerald PC; Vinson C
    BMC Genomics; 2008 Feb; 9():67. PubMed ID: 18252004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COTRASIF: conservation-aided transcription-factor-binding site finder.
    Tokovenko B; Golda R; Protas O; Obolenskaya M; El'skaya A
    Nucleic Acids Res; 2009 Apr; 37(7):e49. PubMed ID: 19264796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The properties of genome conformation and spatial gene interaction and regulation networks of normal and malignant human cell types.
    Wang Z; Cao R; Taylor K; Briley A; Caldwell C; Cheng J
    PLoS One; 2013; 8(3):e58793. PubMed ID: 23536826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.