These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 28473)
1. Reduction of tertiary amine N-oxides by cytochrome P-450. Mechanism of the stimulatory effect of flavins and methyl viologen. Kato R; Iwasaki K; Noguchi H Mol Pharmacol; 1978 Jul; 14(4):654-64. PubMed ID: 28473 [No Abstract] [Full Text] [Related]
2. Stimulatory effect of FMN and methyl viologen on cytochrome P-450 dependent reduction of tertiary amine N-oxide. Kato R; Iwasaki K; Noguchi H Biochem Biophys Res Commun; 1976 Sep; 72(1):267-74. PubMed ID: 10902 [No Abstract] [Full Text] [Related]
3. Reduction of tertiary amine N-oxides by liver microsomal cytochrome P-450. Sugiura M; Iwasaki K; Kato R Mol Pharmacol; 1976 Mar; 12(2):322-34. PubMed ID: 4725 [No Abstract] [Full Text] [Related]
4. The aniline hydroxylase and nitroreductase activities of partially purified cytochromes P-450 and P-420, and cytochrome b5 solubilized from rabbit hepatic microsomes. Symms KG; Juchau MR Drug Metab Dispos; 1974; 2(2):194-201. PubMed ID: 4151000 [No Abstract] [Full Text] [Related]
5. Stereo- and regioselective N- and S-oxidation of tertiary amines and sulfides in the presence of adult human liver microsomes. Cashman JR; Yang Z; Yang L; Wrighton SA Drug Metab Dispos; 1993; 21(3):492-501. PubMed ID: 8100507 [TBL] [Abstract][Full Text] [Related]
6. On the mechanism of hydroxylation reactions catalyzed by cytochrome P-450. Coon MJ; Strobel HW; Boyer RF Drug Metab Dispos; 1973; 1(1):92-7. PubMed ID: 4149427 [No Abstract] [Full Text] [Related]
7. Reduced nicotinamide adenine dinucleotide-dependent reduction of tertiary amine N-oxide by liver microsomal cytochrome P-450. Sugiura M; Iwasaki K; Kato R Biochem Pharmacol; 1977 Mar; 26(6):489-95. PubMed ID: 192244 [No Abstract] [Full Text] [Related]
8. N-oxide formation and related reactions in drug metabolism. Bickel MH Xenobiotica; 1971; 1(4):313-9. PubMed ID: 4368948 [No Abstract] [Full Text] [Related]
9. Perinatal development of tertiary amine N-oxidation and NADPH cytochrome C reduction in rat liver microsomes. Uehleke H; Reiner O; Hellmer KH Res Commun Chem Pathol Pharmacol; 1971 Nov; 2(6):793-805. PubMed ID: 4405002 [No Abstract] [Full Text] [Related]
10. Microsomal cytochrome P450 dependent oxidation of N-hydroxyguanidines, amidoximes, and ketoximes: mechanism of the oxidative cleavage of their C=N(OH) bond with formation of nitrogen oxides. Jousserandot A; Boucher JL; Henry Y; Niklaus B; Clement B; Mansuy D Biochemistry; 1998 Dec; 37(49):17179-91. PubMed ID: 9860831 [TBL] [Abstract][Full Text] [Related]
11. Non-enzymatic reduction of aliphatic tertiary amine N-oxides mediated by the haem moiety of cytochrome P450. Takekawa K; Kitamura S; Sugihara K; Ohta S Xenobiotica; 2001 Jan; 31(1):11-23. PubMed ID: 11334263 [TBL] [Abstract][Full Text] [Related]
12. Loss of rat liver microsomal cytochrome P-450 during methimazole metabolism. Role of flavin-containing monooxygenase. Kedderis GL; Rickert DE Drug Metab Dispos; 1985; 13(1):58-61. PubMed ID: 2858378 [TBL] [Abstract][Full Text] [Related]
13. Flavin-binding and protein structural integrity studies on NADPH-cytochrome P450 reductase are consistent with the presence of distinct domains. Narayanasami R; Horowitz PM; Masters BS Arch Biochem Biophys; 1995 Jan; 316(1):267-74. PubMed ID: 7840627 [TBL] [Abstract][Full Text] [Related]
14. Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. II. Role of the type I drug-binding site of cytochrome P-450. Correia MA; Mannering GJ Mol Pharmacol; 1973 Jul; 9(4):470-85. PubMed ID: 4146890 [No Abstract] [Full Text] [Related]
15. Formation and binding of carbanions by cytochrome P-450 of liver microsomes. Ullrich V; Schnabel KH Drug Metab Dispos; 1973; 1(1):176-83. PubMed ID: 4149380 [No Abstract] [Full Text] [Related]
16. Application of electron-donor properties of glucose oxidase and xanthine oxidase for reduction of microsomal NAD(P)H-dependent electron-transport chains. Izotov MV; Shcherbakov VM; Spiridonova SM; Devichenskiy VM; Benediktova SA Biotechnol Appl Biochem; 1991 Feb; 13(1):90-6. PubMed ID: 2054105 [TBL] [Abstract][Full Text] [Related]
17. Role of phospholipid in the reconstituted liver microsomal mixed function oxidase system containing cytochrome P-450 and NADPH-cytochrome P-450 reductase. Autor AP; Kaschnitz RM; Heidema JK; Van der Hoeven TA; Duppel W; Coon MJ Drug Metab Dispos; 1973; 1(1):156-61. PubMed ID: 4149377 [No Abstract] [Full Text] [Related]
18. Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. I. Effects of activation and inhibition of the fatty acyl coenzyme A desaturation system. Correia MA; Mannering GJ Mol Pharmacol; 1973 Jul; 9(4):455-69. PubMed ID: 4146889 [No Abstract] [Full Text] [Related]
19. Interaction of primary amines with a mixed-function amine oxidase isolated from pig liver microsomes. Ziegler DM; Poulsen LL; McKee EM Xenobiotica; 1971; 1(4):523-31. PubMed ID: 4152927 [No Abstract] [Full Text] [Related]
20. [Effect of copper and zinc on the metabolism of N-nitrosamine and the activity of cytochrome P-450 in the liver of rats]. Luo FQ; Lu SX Zhonghua Zhong Liu Za Zhi; 1988 Jan; 10(1):12-4. PubMed ID: 3416694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]