These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28473763)

  • 1. The Optimal Speed for Cortical Activation of Passive Wrist Movements Performed by a Rehabilitation Robot: A Functional NIRS Study.
    Bae SJ; Jang SH; Seo JP; Chang PH
    Front Hum Neurosci; 2017; 11():194. PubMed ID: 28473763
    [No Abstract]   [Full Text] [Related]  

  • 2. A pilot study on the optimal speeds for passive wrist movements by a rehabilitation robot of stroke patients: A functional NIRS study.
    Bae SJ; Jang SH; Seo JP; Chang PH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():7-12. PubMed ID: 28813785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study.
    Chang PH; Lee SH; Gu GM; Lee SH; Jin SH; Yeo SS; Seo JP; Jang SH
    Front Hum Neurosci; 2014; 8():49. PubMed ID: 24570660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical activation change induced by neuromuscular electrical stimulation during hand movements: a functional NIRS study.
    Jang SH; Jang WH; Chang PH; Lee SH; Jin SH; Kim YG; Yeo SS
    J Neuroeng Rehabil; 2014 Mar; 11():29. PubMed ID: 24597550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cortical activation differences between proximal and distal joint movements of the upper extremities: a functional NIRS study.
    Yeo SS; Chang PH; Jang SH
    NeuroRehabilitation; 2013; 32(4):861-6. PubMed ID: 23867412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of passive and active training modes of upper-limb rehabilitation robot on cortical activation: a functional near-infrared spectroscopy study.
    Zheng J; Shi P; Fan M; Liang S; Li S; Yu H
    Neuroreport; 2021 Apr; 32(6):479-488. PubMed ID: 33788815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. There is No test-retest reliability of brain activation induced by robotic passive hand movement: A functional NIRS study.
    Bae S; Lee Y; Chang PH
    Brain Behav; 2020 Oct; 10(10):e01788. PubMed ID: 32794359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cortical activation pattern during bilateral arm raising movements.
    Jang SH; Seo JP; Lee SH; Jin SH; Yeo SS
    Neural Regen Res; 2017 Feb; 12(2):317-320. PubMed ID: 28400816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical activation pattern during shoulder simple
    Jang SH; Yeo SS; Lee SH; Jin SH; Lee MY
    Neural Regen Res; 2017 Aug; 12(8):1294-1298. PubMed ID: 28966644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognitive and motor cortex activation during robot-assisted multi-sensory interactive motor rehabilitation training: An fNIRS based pilot study.
    Zheng J; Ma Q; He W; Huang Y; Shi P; Li S; Yu H
    Front Hum Neurosci; 2023; 17():1089276. PubMed ID: 36845877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similar scaling of contralateral and ipsilateral cortical responses during graded unimanual force generation.
    Derosière G; Alexandre F; Bourdillon N; Mandrick K; Ward TE; Perrey S
    Neuroimage; 2014 Jan; 85 Pt 1():471-7. PubMed ID: 23416251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Within-session and between-session reproducibility of cerebral sensorimotor activation: a test--retest effect evidenced with functional magnetic resonance imaging.
    Loubinoux I; Carel C; Alary F; Boulanouar K; Viallard G; Manelfe C; Rascol O; Celsis P; Chollet F
    J Cereb Blood Flow Metab; 2001 May; 21(5):592-607. PubMed ID: 11333370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke.
    Hu XL; Tong KY; Song R; Zheng XJ; Leung WW
    Neurorehabil Neural Repair; 2009 Oct; 23(8):837-46. PubMed ID: 19531605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Best facilitated cortical activation during different stepping, treadmill, and robot-assisted walking training paradigms and speeds: A functional near-infrared spectroscopy neuroimaging study.
    Kim HY; Yang SP; Park GL; Kim EJ; You JS
    NeuroRehabilitation; 2016; 38(2):171-8. PubMed ID: 26923356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences of the frontal activation patterns by finger and toe movements: a functional MRI study.
    Lee MY; Chang PH; Kwon YH; Jang SH
    Neurosci Lett; 2013 Jan; 533():7-10. PubMed ID: 23206749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Immersive Virtual Reality-Based Hand Rehabilitation System Using a Gesture-Controlled Rhythm Game With Vibrotactile Feedback: An fNIRS Pilot Study.
    Bae S; Park HS
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3732-3743. PubMed ID: 37669214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of Cortical Activity by High-Frequency Whole-Body Vibration Exercise: An fNIRS Study.
    Choi DS; Lee HJ; Shin YI; Lee A; Kim HG; Kim YH
    J Sport Rehabil; 2019 Sep; 28(7):665-670. PubMed ID: 30222484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-based hand motor therapy after stroke.
    Takahashi CD; Der-Yeghiaian L; Le V; Motiwala RR; Cramer SC
    Brain; 2008 Feb; 131(Pt 2):425-37. PubMed ID: 18156154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects.
    Khor KX; Chin PJH; Yeong CF; Su ELM; Narayanan ALT; Abdul Rahman H; Khan QI
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1864-1873. PubMed ID: 28410110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.