These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 28474030)
1. A beta-Fe Zhang N; Guo Y; Wang X; Zhang S; Li Z; Zou Z Dalton Trans; 2017 Aug; 46(32):10673-10677. PubMed ID: 28474030 [TBL] [Abstract][Full Text] [Related]
2. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance. Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649 [TBL] [Abstract][Full Text] [Related]
3. Paving the road toward the use of β-Fe Zhang N; Wang X; Feng J; Huang H; Guo Y; Li Z; Zou Z Natl Sci Rev; 2020 Jun; 7(6):1059-1067. PubMed ID: 34692125 [TBL] [Abstract][Full Text] [Related]
4. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting. Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641 [TBL] [Abstract][Full Text] [Related]
5. Nanoporous Cubic Silicon Carbide Photoanodes for Enhanced Solar Water Splitting. Jian JX; Jokubavicius V; Syväjärvi M; Yakimova R; Sun J ACS Nano; 2021 Mar; 15(3):5502-5512. PubMed ID: 33605135 [TBL] [Abstract][Full Text] [Related]
6. Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance. Li Y; Wei X; Zhu B; Wang H; Tang Y; Sum TC; Chen X Nanoscale; 2016 Jun; 8(21):11284-90. PubMed ID: 27189633 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of CuFe Hussain S; Hussain S; Waleed A; Tavakoli MM; Wang Z; Yang S; Fan Z; Nadeem MA ACS Appl Mater Interfaces; 2016 Dec; 8(51):35315-35322. PubMed ID: 28027650 [TBL] [Abstract][Full Text] [Related]
8. Enhanced solar water-splitting activity of novel nanostructured Fe Wang M; Wu X; Huang K; Sun Y; Zhang Y; Zhang H; He J; Chen H; Ding J; Feng S Nanoscale; 2018 Apr; 10(14):6678-6683. PubMed ID: 29589032 [TBL] [Abstract][Full Text] [Related]
9. Regulating the Silicon/Hematite Microwire Photoanode by the Conformal Al Zhou Z; Wu S; Li L; Li L; Li X ACS Appl Mater Interfaces; 2019 Feb; 11(6):5978-5988. PubMed ID: 30657304 [TBL] [Abstract][Full Text] [Related]
10. Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting. Zhen C; Wang L; Liu G; Lu GQ; Cheng HM Chem Commun (Camb); 2013 Apr; 49(29):3019-21. PubMed ID: 23463440 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode. Yang J; Bao C; Yu T; Hu Y; Luo W; Zhu W; Fu G; Li Z; Gao H; Li F; Zou Z ACS Appl Mater Interfaces; 2015 Dec; 7(48):26482-90. PubMed ID: 26565922 [TBL] [Abstract][Full Text] [Related]
12. Hierarchical Co-Pi Clusters/Fe Kim N; Ju S; Ha J; Choi H; Sung H; Lee H Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296855 [TBL] [Abstract][Full Text] [Related]
13. Metal-Organic Framework-Derived p-Cu Wu J; Huang P; Fan H; Wang G; Liu W ACS Appl Mater Interfaces; 2020 Jul; 12(27):30304-30312. PubMed ID: 32543170 [TBL] [Abstract][Full Text] [Related]
14. Surface Rh-Boosted Photoelectrochemical Water Oxidation of α-Fe Kim YM; Hong Y; Hur K; Kim MS; Sung YM ACS Appl Mater Interfaces; 2023 Aug; 15(31):37290-37299. PubMed ID: 37489940 [TBL] [Abstract][Full Text] [Related]
16. Quasi-Topotactic Transformation of FeOOH Nanorods to Robust Fe Liao A; He H; Tang L; Li Y; Zhang J; Chen J; Chen L; Zhang C; Zhou Y; Zou Z ACS Appl Mater Interfaces; 2018 Mar; 10(12):10141-10146. PubMed ID: 29498822 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Solar Water Splitting by Swift Charge Separation in Au/FeOOH Sandwiched Single-Crystalline Fe Wang L; Nguyen NT; Zhang Y; Bi Y; Schmuki P ChemSusChem; 2017 Jul; 10(13):2720-2727. PubMed ID: 28437588 [TBL] [Abstract][Full Text] [Related]
18. Highly Active GaN-Stabilized Ta Zhong M; Hisatomi T; Sasaki Y; Suzuki S; Teshima K; Nakabayashi M; Shibata N; Nishiyama H; Katayama M; Yamada T; Domen K Angew Chem Int Ed Engl; 2017 Apr; 56(17):4739-4743. PubMed ID: 28323376 [TBL] [Abstract][Full Text] [Related]
19. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting. Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489 [TBL] [Abstract][Full Text] [Related]
20. Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting. Fu L; Yu H; Li Y; Zhang C; Wang X; Shao Z; Yi B Phys Chem Chem Phys; 2014 Mar; 16(9):4284-90. PubMed ID: 24451918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]