These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 28474093)

  • 1. The modulation of the motor resonance triggered by reach-to-grasp movements: No role of human physical similarity as conveyed by age.
    Marino BFM; Ricciardelli P
    Exp Brain Res; 2017 Jul; 235(7):2267-2286. PubMed ID: 28474093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The destination defines the journey: an examination of the kinematics of hand-to-mouth movements.
    Flindall JW; Gonzalez CL
    J Neurophysiol; 2016 Nov; 116(5):2105-2113. PubMed ID: 27512020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices.
    Takahashi K; Best MD; Huh N; Brown KA; Tobaa AA; Hatsopoulos NG
    J Neurosci; 2017 Feb; 37(7):1733-1746. PubMed ID: 28077725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Neurocircuitry of Grasping: The influence of action intent on kinematic asymmetries in reach-to-grasp actions.
    Flindall J; Gonzalez CLR
    Atten Percept Psychophys; 2019 Oct; 81(7):2217-2236. PubMed ID: 31290131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gender differences in non-standard mapping tasks: A kinematic study using pantomimed reach-to-grasp actions.
    Copley-Mills J; Connolly JD; Cavina-Pratesi C
    Cortex; 2016 Sep; 82():244-254. PubMed ID: 27410715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinematic analysis of age-related changes in grasping to use and grasping to move common objects.
    Cicerale A; Ambron E; Lingnau A; Rumiati RI
    Acta Psychol (Amst); 2014 Sep; 151():134-42. PubMed ID: 24977936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action-perception theory.
    Kuntz JR; Karl JM; Doan JB; Whishaw IQ
    Exp Brain Res; 2018 Apr; 236(4):1091-1103. PubMed ID: 29441469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing task precision demands reveals that the reach and grasp remain subject to different perception-action constraints in 12-month-old human infants.
    Karl JM; Slack BM; Wilson AM; Wilson CA; Bertoli ME
    Infant Behav Dev; 2019 Nov; 57():101382. PubMed ID: 31580995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grasp-specific motor resonance is influenced by the visibility of the observed actor.
    Bunday KL; Lemon RN; Kilner JM; Davare M; Orban GA
    Cortex; 2016 Nov; 84():43-54. PubMed ID: 27697663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reach and Grasp reconfigurations reveal that proprioception assists reaching and hapsis assists grasping in peripheral vision.
    Hall LA; Karl JM; Thomas BL; Whishaw IQ
    Exp Brain Res; 2014 Sep; 232(9):2807-19. PubMed ID: 24792500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic effects of subthalamic stimulation on reach-to-grasp movements in Parkinson's disease.
    Pötter-Nerger M; Habben A; Herzog J; Falk D; Mehdorn MH; Deuschl G; Volkmann J
    Parkinsonism Relat Disord; 2013 Jan; 19(1):32-6. PubMed ID: 22795308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactor's body shape does not affect visuo-motor interference effects during motor coordination.
    Gandolfo M; Era V; Tieri G; Sacheli LM; Candidi M
    Acta Psychol (Amst); 2019 May; 196():42-50. PubMed ID: 30986565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Touch the table before the target: contact with an underlying surface may assist the development of precise visually controlled reach and grasp movements in human infants.
    Karl JM; Wilson AM; Bertoli ME; Shubear NS
    Exp Brain Res; 2018 Aug; 236(8):2185-2207. PubMed ID: 29797280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related changes in reach-to-grasp movements with partial visual occlusion.
    Runnarong N; Tretriluxana J; Waiyasil W; Sittisupapong P; Tretriluxana S
    PLoS One; 2019; 14(8):e0221320. PubMed ID: 31461484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observer-Agent Kinematic Similarity Facilitates Action Intention Decoding.
    De Marco D; Scalona E; Bazzini MC; Avanzini P; Fabbri-Destro M
    Sci Rep; 2020 Feb; 10(1):2605. PubMed ID: 32054915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grasp-specific high-frequency broadband mirror neuron activity during reach-and-grasp movements in humans.
    Dreyer AM; Michalke L; Perry A; Chang EF; Lin JJ; Knight RT; Rieger JW
    Cereb Cortex; 2023 May; 33(10):6291-6298. PubMed ID: 36562997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shaping of Reach-to-Grasp Kinematics by Intentions: A Meta-Analysis.
    Egmose I; Køppe S
    J Mot Behav; 2018; 50(2):155-165. PubMed ID: 28644719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor facilitation during action observation: The role of M1 and PMv in grasp predictions.
    de Beukelaar TT; Alaerts K; Swinnen SP; Wenderoth N
    Cortex; 2016 Feb; 75():180-192. PubMed ID: 26800203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hear speech, change your reach: changes in the left-hand grasp-to-eat action during speech processing.
    van Rootselaar NA; Flindall JW; Gonzalez CLR
    Exp Brain Res; 2018 Dec; 236(12):3267-3277. PubMed ID: 30229305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.