These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28474182)

  • 21. Evaluating Osseointegration Into a Deeply Porous Titanium Scaffold: A Biomechanical Comparison With PEEK and Allograft.
    Guyer RD; Abitbol JJ; Ohnmeiss DD; Yao C
    Spine (Phila Pa 1976); 2016 Oct; 41(19):E1146-E1150. PubMed ID: 27135643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion.
    Wu SH; Li Y; Zhang YQ; Li XK; Yuan CF; Hao YL; Zhang ZY; Guo Z
    Artif Organs; 2013 Dec; 37(12):E191-201. PubMed ID: 24147953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: experimental studies in sheep.
    Palmquist A; Snis A; Emanuelsson L; Browne M; Thomsen P
    J Biomater Appl; 2013 May; 27(8):1003-16. PubMed ID: 22207608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel 3D printed cage with microporous structure and in vivo fusion function.
    Li P; Jiang W; Yan J; Hu K; Han Z; Wang B; Zhao Y; Cui G; Wang Z; Mao K; Wang Y; Cui F
    J Biomed Mater Res A; 2019 Jul; 107(7):1386-1392. PubMed ID: 30724479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The potential of the three-dimensional printed titanium mesh implant for cranioplasty surgery applications: Biomechanical behaviors and surface properties.
    Huang MT; Juan PK; Chen SY; Wu CJ; Wen SC; Cho YC; Huang MS; Chou HH; Ou KL
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():412-419. PubMed ID: 30678927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Partial Bone Formation in Additive Manufactured Porous Implants Reduces Predicted Stress and Danger of Fatigue Failure.
    Cheong VS; Fromme P; Coathup MJ; Mumith A; Blunn GW
    Ann Biomed Eng; 2020 Jan; 48(1):502-514. PubMed ID: 31549330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications.
    Li F; Li J; Xu G; Liu G; Kou H; Zhou L
    J Mech Behav Biomed Mater; 2015 Jun; 46():104-14. PubMed ID: 25778351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Promotion of Osseointegration between Implant and Bone Interface by Titanium Alloy Porous Scaffolds Prepared by 3D Printing.
    Zheng Y; Han Q; Wang J; Li D; Song Z; Yu J
    ACS Biomater Sci Eng; 2020 Sep; 6(9):5181-5190. PubMed ID: 33455268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective laser melting of titanium alloy enables osseointegration of porous multi-rooted implants in a rabbit model.
    Peng W; Xu L; You J; Fang L; Zhang Q
    Biomed Eng Online; 2016 Jul; 15(1):85. PubMed ID: 27439427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [A preliminary study of three-dimensional printed porous titanium plate integrated implant for the repair of comminuted acetabular posterior wall fracture with bone defect].
    Zhang YC; Li JJ; Hou WT; Zhang HF; Liu JH
    Zhongguo Gu Shang; 2019 May; 32(5):469-474. PubMed ID: 31248245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stiffness and strength of cranioplastic implant systems in comparison to cranial bone.
    Persson J; Helgason B; Engqvist H; Ferguson SJ; Persson C
    J Craniomaxillofac Surg; 2018 Mar; 46(3):418-423. PubMed ID: 29325887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implant Strength Contributes to the Osseointegration Strength of Porous Metallic Materials.
    Mathey E; Pelletier MH; Walsh WR; Gall K; Carpenter D
    J Biomech Eng; 2024 Oct; 146(10):. PubMed ID: 38668718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyether-Ether-Ketone (PEEK) and Its 3D-Printed Quantitate Assessment in Cranial Reconstruction.
    Moiduddin K; Mian SH; Elseufy SM; Alkhalefah H; Ramalingam S; Sayeed A
    J Funct Biomater; 2023 Aug; 14(8):. PubMed ID: 37623673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications.
    Li F; Li J; Kou H; Huang T; Zhou L
    J Mater Sci Mater Med; 2015 Sep; 26(9):233. PubMed ID: 26384823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on the performance of selective laser melting porous dental implant by finite element model simulation, fatigue testing and in vivo experiments.
    Wang Y; Chen X; Zhang C; Feng W; Zhang P; Chen Y; Huang J; Luo Y; Chen J
    Proc Inst Mech Eng H; 2019 Feb; 233(2):170-180. PubMed ID: 30565502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatigue behavior of thin-walled grade 2 titanium samples processed by selective laser melting. Application to life prediction of porous titanium implants.
    Lipinski P; Barbas A; Bonnet AS
    J Mech Behav Biomed Mater; 2013 Dec; 28():274-90. PubMed ID: 24008139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis.
    Barui S; Chatterjee S; Mandal S; Kumar A; Basu B
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Minimizing bone gaps when using custom pediatric cranial implants is associated with implant success.
    Bowers CA; McMullin JH; Brimley C; Etherington L; Siddiqi FA; Riva-Cambrin J
    J Neurosurg Pediatr; 2015 Oct; 16(4):439-44. PubMed ID: 26161719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cranioplasty with customized titanium and PEEK implants in a mechanical stress model.
    Lethaus B; Safi Y; ter Laak-Poort M; Kloss-Brandstätter A; Banki F; Robbenmenke C; Steinseifer U; Kessler P
    J Neurotrauma; 2012 Apr; 29(6):1077-83. PubMed ID: 22017579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of inter-implant distance and implant length on the response to frontal traumatic force of two anterior implants in an atrophic mandible: three-dimensional finite element analysis.
    Kan B; Coskunses FM; Mutlu I; Ugur L; Meral DG
    Int J Oral Maxillofac Surg; 2015 Jul; 44(7):908-13. PubMed ID: 25818310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.