BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28474281)

  • 1. On the Ability of Formaldehyde to Act as a Tethering Catalyst in Water.
    Jamshidi MP; MacDonald MJ; Beauchemin AM
    Orig Life Evol Biosph; 2017 Dec; 47(4):405-412. PubMed ID: 28474281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular-scale perspective of water-catalyzed methanol dehydrogenation to formaldehyde.
    Boucher MB; Marcinkowski MD; Liriano ML; Murphy CJ; Lewis EA; Jewell AD; Mattera MF; Kyriakou G; Flytzani-Stephanopoulos M; Sykes EC
    ACS Nano; 2013 Jul; 7(7):6181-7. PubMed ID: 23746268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR studies of the equilibria and reaction rates in aqueous solutions of formaldehyde.
    Rivlin M; Eliav U; Navon G
    J Phys Chem B; 2015 Mar; 119(12):4479-87. PubMed ID: 25742498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiolysis of aqueous formaldehyde relevant to cometary environments.
    Castillo-Rojas S; Landeros JC; Negron-Mendoza A; Navarro-Gonzalez R
    Adv Space Res; 1992; 12(4):57-62. PubMed ID: 11538156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of prebiotic-type organic molecules on the crystallization of Al and Mg hydroxides.
    Costanzo PM; Laszlo P
    Orig Life Evol Biosph; 1988; 18(4):327-45. PubMed ID: 11536605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organocatalysis using aldehydes: the development and improvement of catalytic hydroaminations, hydrations and hydrolyses.
    Li BJ; Ei-Nachef C; Beauchemin AM
    Chem Commun (Camb); 2017 Dec; 53(99):13192-13204. PubMed ID: 29131221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prebiotic methylation and the evolution of methyl transfer reactions in living cells.
    Waddell TG; Eilders LL; Patel BP; Sims M
    Orig Life Evol Biosph; 2000 Dec; 30(6):539-48. PubMed ID: 11196574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-carbamoyl-alpha-amino acids rather than free alpha-amino acids formation in the primitive hydrosphere: a novel proposal for the emergence of prebiotic peptides.
    Taillades J; Beuzelin I; Garrel L; Tabacik V; Bied C; Commeyras A
    Orig Life Evol Biosph; 1998 Feb; 28(1):61-77. PubMed ID: 11536856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary Formation Path of Formaldehyde in Hydrothermal Vents.
    Inaba S
    Orig Life Evol Biosph; 2018 Mar; 48(1):1-22. PubMed ID: 28875241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prebiotic amino acids as asymmetric catalysts.
    Pizzarello S; Weber AL
    Science; 2004 Feb; 303(5661):1151. PubMed ID: 14976304
    [No Abstract]   [Full Text] [Related]  

  • 11. An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions.
    Schutte WA; Allamandola LJ; Sandford SA
    Icarus; 1993; 104():118-37. PubMed ID: 11540089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of Hexamethylenetetramine (HMT) from HCHO and NH3--Relevance to Prebiotic Chemistry and B3LYP Consideration.
    Zeffiro A; Lazzaroni S; Merli D; Profumo A; Buttafava A; Serpone N; Dondi D
    Orig Life Evol Biosph; 2016 Jun; 46(2-3):223-31. PubMed ID: 26680445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attempted prebiotic synthesis of pseudouridine.
    Dworkin JP
    Orig Life Evol Biosph; 1997 Aug; 27(4):345-55. PubMed ID: 11536828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric autocatalytic Mannich reaction in the presence of water and its implication in prebiotic chemistry.
    Amedjkouh M; Brandberg M
    Chem Commun (Camb); 2008 Jul; (26):3043-5. PubMed ID: 18688342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the lead-catalyzed synthesis of aldopentoses.
    Zubay G
    Orig Life Evol Biosph; 1998 Feb; 28(1):13-26. PubMed ID: 11536853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A green synthesis in water of novel (1,5,3-dithiazepan-3-yl)alkanoic acids by the multicomponent reaction of amino acids, CH2O, and 1,2-ethanedithiol.
    Khabibullina GR; Fedotova ES; Akhmetova VR; Mesheryakova ES; Khalilov LM; Ibragimov AG
    Mol Divers; 2016 May; 20(2):557-65. PubMed ID: 26825297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic studies on the cascade conversion of 1,3-dihydroxyacetone and formaldehyde into α-hydroxy-γ-butyrolactone.
    Yamaguchi S; Matsuo T; Motokura K; Sakamoto Y; Miyaji A; Baba T
    ChemSusChem; 2015 Mar; 8(5):853-60. PubMed ID: 25648856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formaldehyde as Tethering Organocatalyst: Highly Diastereoselective Hydroaminations of Allylic Amines.
    Hesp CR; MacDonald MJ; Zahedi MM; Bilodeau DA; Zhao SB; Pesant M; Beauchemin AM
    Org Lett; 2015 Oct; 17(20):5136-9. PubMed ID: 26417922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental conditions drive self-organization of reaction pathways in a prebiotic reaction network.
    Robinson WE; Daines E; van Duppen P; de Jong T; Huck WTS
    Nat Chem; 2022 Jun; 14(6):623-631. PubMed ID: 35668214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Archean geochemistry of formaldehyde and cyanide and the oligomerization of cyanohydrin.
    Arrhenius T; Arrhenius G; Paplawsky W
    Orig Life Evol Biosph; 1994 Feb; 24(1):1-17. PubMed ID: 11536656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.