These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28474362)

  • 1. Identification of physical interactions between genomic regions by enChIP-Seq.
    Fujita T; Yuno M; Suzuki Y; Sugano S; Fujii H
    Genes Cells; 2017 Jun; 22(6):506-520. PubMed ID: 28474362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of specific genomic regions and identification of associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR.
    Fujita T; Fujii H
    Methods Mol Biol; 2015; 1288():43-52. PubMed ID: 25827874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of Specific Genomic Regions and Identification of Their Associated Molecules by Engineered DNA-Binding Molecule-Mediated Chromatin Immunoprecipitation (enChIP) Using the CRISPR System and TAL Proteins.
    Fujii H; Fujita T
    Int J Mol Sci; 2015 Sep; 16(9):21802-12. PubMed ID: 26370991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. enChIP-Seq Analyzer: A Software Program to Analyze and Interpret enChIP-Seq Data for the Detection of Physical Interactions between Genomic Regions.
    Sarudate A; Fujita T; Nakayama T; Fujii H
    Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An enChIP system for the analysis of bacterial genome functions.
    Fujita T; Yuno M; Fujii H
    BMC Res Notes; 2018 Jun; 11(1):387. PubMed ID: 29898790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of Specific Genomic Regions and Identification of Associated Molecules by enChIP.
    Fujita T; Fujii H
    J Vis Exp; 2016 Jan; (107):e53478. PubMed ID: 26862718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. enChIP systems using different CRISPR orthologues and epitope tags.
    Fujita T; Yuno M; Fujii H
    BMC Res Notes; 2018 Feb; 11(1):154. PubMed ID: 29482606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient sequence-specific isolation of DNA fragments and chromatin by in vitro enChIP technology using recombinant CRISPR ribonucleoproteins.
    Fujita T; Yuno M; Fujii H
    Genes Cells; 2016 Apr; 21(4):370-7. PubMed ID: 26848818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenic mouse lines expressing the 3xFLAG-dCas9 protein for enChIP analysis.
    Fujita T; Kitaura F; Oji A; Tanigawa N; Yuno M; Ikawa M; Taniuchi I; Fujii H
    Genes Cells; 2018 Apr; 23(4):318-325. PubMed ID: 29480524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of non-coding RNAs associated with telomeres using a combination of enChIP and RNA sequencing.
    Fujita T; Yuno M; Okuzaki D; Ohki R; Fujii H
    PLoS One; 2015; 10(4):e0123387. PubMed ID: 25874893
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Fujita T; Fujii H
    Bio Protoc; 2017 Nov; 7(22):e2612. PubMed ID: 34595285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR.
    Fujita T; Fujii H
    Biochem Biophys Res Commun; 2013 Sep; 439(1):132-6. PubMed ID: 23942116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An enChIP system for the analysis of genome functions in budding yeast.
    Fujii H; Fujita T
    Biol Methods Protoc; 2022; 7(1):bpac025. PubMed ID: 36325175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MSCV-based retroviral plasmids expressing 3xFLAG-Sp-dCas9 for enChIP analysis.
    Yuno M; Nagata S; Fujita T; Fujii H
    Biol Methods Protoc; 2021; 6(1):bpab013. PubMed ID: 34409168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utility of next-generation RNA-sequencing in identifying chimeric transcription involving human endogenous retroviruses.
    Sokol M; Jessen KM; Pedersen FS
    APMIS; 2016; 124(1-2):127-39. PubMed ID: 26818267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research.
    Fujita T; Fujii H
    Int J Mol Sci; 2015 Sep; 16(10):23143-64. PubMed ID: 26404236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Scalable Epitope Tagging Approach for High Throughput ChIP-Seq Analysis.
    Xiong X; Zhang Y; Yan J; Jain S; Chee S; Ren B; Zhao H
    ACS Synth Biol; 2017 Jun; 6(6):1034-1042. PubMed ID: 28215080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locus-specific ChIP combined with NGS analysis reveals genomic regulatory regions that physically interact with the Pax5 promoter in a chicken B cell line.
    Fujita T; Kitaura F; Yuno M; Suzuki Y; Sugano S; Fujii H
    DNA Res; 2017 Oct; 24(5):537-548. PubMed ID: 28586432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of proteins associated with an IFNγ-responsive promoter by a retroviral expression system for enChIP using CRISPR.
    Fujita T; Fujii H
    PLoS One; 2014; 9(7):e103084. PubMed ID: 25051498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP).
    Fujita T; Asano Y; Ohtsuka J; Takada Y; Saito K; Ohki R; Fujii H
    Sci Rep; 2013 Nov; 3():3171. PubMed ID: 24201379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.