These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 28474681)
1. Hallmarks of Hunds coupling in the Mott insulator Ca Sutter D; Fatuzzo CG; Moser S; Kim M; Fittipaldi R; Vecchione A; Granata V; Sassa Y; Cossalter F; Gatti G; Grioni M; Rønnow HM; Plumb NC; Matt CE; Shi M; Hoesch M; Kim TK; Chang TR; Jeng HT; Jozwiak C; Bostwick A; Rotenberg E; Georges A; Neupert T; Chang J Nat Commun; 2017 May; 8():15176. PubMed ID: 28474681 [TBL] [Abstract][Full Text] [Related]
2. Charge and spin degrees of freedom in strongly correlated systems: Mott states opposite Hund's metals. Novoselov DY; Korotin DM; Shorikov AO; Anisimov VI J Phys Condens Matter; 2020 May; 32(23):235601. PubMed ID: 32053796 [TBL] [Abstract][Full Text] [Related]
3. Hund's metal regimes and orbital selective Mott transitions in three band systems. Facio JI; Cornaglia PS J Phys Condens Matter; 2019 Jun; 31(24):245602. PubMed ID: 30844779 [TBL] [Abstract][Full Text] [Related]
4. Tuning orbital-selective phase transitions in a two-dimensional Hund's correlated system. Ko EK; Hahn S; Sohn C; Lee S; Lee SB; Sohn B; Kim JR; Son J; Song J; Kim Y; Kim D; Kim M; Kim CH; Kim C; Noh TW Nat Commun; 2023 Jun; 14(1):3572. PubMed ID: 37328474 [TBL] [Abstract][Full Text] [Related]
5. Magnetic couplings, optical spectra, and spin-orbit exciton in 5d electron Mott insulator Sr2IrO4. Kim BH; Khaliullin G; Min BI Phys Rev Lett; 2012 Oct; 109(16):167205. PubMed ID: 23215122 [TBL] [Abstract][Full Text] [Related]
6. Microscopic study of a spin-orbit-induced Mott insulator in Ir oxides. Watanabe H; Shirakawa T; Yunoki S Phys Rev Lett; 2010 Nov; 105(21):216410. PubMed ID: 21231335 [TBL] [Abstract][Full Text] [Related]
7. Direct observation of kink evolution due to Hund's coupling on approach to metal-insulator transition in NiS Jang BG; Han G; Park I; Kim D; Koh YY; Kim Y; Kyung W; Kim HD; Cheng CM; Tsuei KD; Lee KD; Hur N; Shim JH; Kim C; Kotliar G Nat Commun; 2021 Feb; 12(1):1208. PubMed ID: 33623023 [TBL] [Abstract][Full Text] [Related]
8. Ground state of a three-band Hubbard model with Hund's coupling: Janus-faced behavior in presence of magnetic order. Maurya AK; Sarder MTH; Medhi A J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34298529 [TBL] [Abstract][Full Text] [Related]
9. NaFe_{0.56}Cu_{0.44}As: A Pnictide Insulating Phase Induced by On-Site Coulomb Interaction. Matt CE; Xu N; Lv B; Ma J; Bisti F; Park J; Shang T; Cao C; Song Y; Nevidomskyy AH; Dai P; Patthey L; Plumb NC; Radovic M; Mesot J; Shi M Phys Rev Lett; 2016 Aug; 117(9):097001. PubMed ID: 27610876 [TBL] [Abstract][Full Text] [Related]
10. Orbital-Selectivity-Induced Robust Quantum Anomalous Hall Effect in Hund's Metals MgFeP. Yao Q; Xue Y; Zhao B; Zhu Y; Li Z; Yang Z Nano Lett; 2024 Feb; 24(5):1563-1569. PubMed ID: 38262051 [TBL] [Abstract][Full Text] [Related]
11. Assessing the orbital selective Mott transition with variational wave functions. Tocchio LF; Arrigoni F; Sorella S; Becca F J Phys Condens Matter; 2016 Mar; 28(10):105602. PubMed ID: 26881997 [TBL] [Abstract][Full Text] [Related]
12. Nature of the Mott transition in Ca2RuO4. Gorelov E; Karolak M; Wehling TO; Lechermann F; Lichtenstein AI; Pavarini E Phys Rev Lett; 2010 Jun; 104(22):226401. PubMed ID: 20867184 [TBL] [Abstract][Full Text] [Related]
13. In situ strain tuning of the metal-insulator-transition of Ca Riccò S; Kim M; Tamai A; McKeown Walker S; Bruno FY; Cucchi I; Cappelli E; Besnard C; Kim TK; Dudin P; Hoesch M; Gutmann MJ; Georges A; Perry RS; Baumberger F Nat Commun; 2018 Oct; 9(1):4535. PubMed ID: 30382088 [TBL] [Abstract][Full Text] [Related]
14. Unified understanding of superconductivity and Mott transition in alkali-doped fullerides from first principles. Nomura Y; Sakai S; Capone M; Arita R Sci Adv; 2015 Aug; 1(7):e1500568. PubMed ID: 26601242 [TBL] [Abstract][Full Text] [Related]
15. J_{eff} Description of the Honeycomb Mott Insulator α-RuCl_{3}. Koitzsch A; Habenicht C; Müller E; Knupfer M; Büchner B; Kandpal HC; van den Brink J; Nowak D; Isaeva A; Doert T Phys Rev Lett; 2016 Sep; 117(12):126403. PubMed ID: 27689287 [TBL] [Abstract][Full Text] [Related]
16. Light-induced insulator-metal transition in Sr Choi D; Yue C; Azoury D; Porter Z; Chen J; Petocchi F; Baldini E; Lv B; Mogi M; Su Y; Wilson SD; Eckstein M; Werner P; Gedik N Proc Natl Acad Sci U S A; 2024 Jul; 121(29):e2323013121. PubMed ID: 38976737 [TBL] [Abstract][Full Text] [Related]
17. Mott transition, magnetic and orbital orders in the ground state of the two-band Hubbard model using variational slave-spin mean field formalism. Maurya AK; Sarder MTH; Medhi A J Phys Condens Matter; 2021 Nov; 34(5):. PubMed ID: 34710854 [TBL] [Abstract][Full Text] [Related]
18. Orbital-Dependent Band Narrowing Revealed in an Extremely Correlated Hund's Metal Emerging on the Topmost Layer of Sr_{2}RuO_{4}. Kondo T; Ochi M; Nakayama M; Taniguchi H; Akebi S; Kuroda K; Arita M; Sakai S; Namatame H; Taniguchi M; Maeno Y; Arita R; Shin S Phys Rev Lett; 2016 Dec; 117(24):247001. PubMed ID: 28009182 [TBL] [Abstract][Full Text] [Related]
19. Band insulator to Mott insulator transition in 1T-TaS Wang YD; Yao WL; Xin ZM; Han TT; Wang ZG; Chen L; Cai C; Li Y; Zhang Y Nat Commun; 2020 Aug; 11(1):4215. PubMed ID: 32839433 [TBL] [Abstract][Full Text] [Related]
20. Coupled spin-orbital fluctuations in a three orbital model for 4 Mohapatra S; Singh A J Phys Condens Matter; 2021 Jul; 33(34):. PubMed ID: 34126598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]