These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 28474720)

  • 1. Aerobic catalytic systems inspired by copper amine oxidases: recent developments and synthetic applications.
    Largeron M
    Org Biomol Chem; 2017 Jun; 15(22):4722-4730. PubMed ID: 28474720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.
    Largeron M; Fleury MB
    Chemistry; 2015 Feb; 21(9):3815-20. PubMed ID: 25643811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired organocatalytic aerobic C-H oxidation of amines with an ortho-quinone catalyst.
    Qin Y; Zhang L; Lv J; Luo S; Cheng JP
    Org Lett; 2015 Mar; 17(6):1469-72. PubMed ID: 25761008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmentally friendly chemoselective oxidation of primary aliphatic amines by using a biomimetic electrocatalytic system.
    Largeron M; Chiaroni A; Fleury MB
    Chemistry; 2008; 14(3):996-1003. PubMed ID: 17992680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition and oxygen activation in copper amine oxidases.
    Shepard EM; Dooley DM
    Acc Chem Res; 2015 May; 48(5):1218-26. PubMed ID: 25897668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quinone-Catalyzed Selective Oxidation of Organic Molecules.
    Wendlandt AE; Stahl SS
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14638-58. PubMed ID: 26530485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of unactivated primary aliphatic amines catalyzed by an electrogenerated 3,4-azaquinone species: a small-molecule mimic of amine oxidases.
    Largeron M; Neudorffer A; Fleury MB
    Angew Chem Int Ed Engl; 2003 Mar; 42(9):1026-9. PubMed ID: 12616557
    [No Abstract]   [Full Text] [Related]  

  • 8. Bioinspired aerobic oxidation of secondary amines and nitrogen heterocycles with a bifunctional quinone catalyst.
    Wendlandt AE; Stahl SS
    J Am Chem Soc; 2014 Jan; 136(1):506-12. PubMed ID: 24328193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of post-translational quinone formation in copper amine oxidases and its relationship to the catalytic turnover.
    Dubois JL; Klinman JP
    Arch Biochem Biophys; 2005 Jan; 433(1):255-65. PubMed ID: 15581581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A small molecule that mimics the metabolic activity of copper-containing amine oxidases (CuAOs) toward physiological mono- and polyamines.
    Largeron M; Fleury MB; Strolin Benedetti M
    Org Biomol Chem; 2010 Aug; 8(16):3796-800. PubMed ID: 20574584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective.
    Brazeau BJ; Johnson BJ; Wilmot CM
    Arch Biochem Biophys; 2004 Aug; 428(1):22-31. PubMed ID: 15234266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism-based cofactor derivatization of a copper amine oxidase by a branched primary amine recruits the oxidase activity of the enzyme to turn inactivator into substrate.
    Qiao C; Ling KQ; Shepard EM; Dooley DM; Sayre LM
    J Am Chem Soc; 2006 May; 128(18):6206-19. PubMed ID: 16669691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen Activation Switch in the Copper Amine Oxidase of Escherichia coli.
    Gaule TG; Smith MA; Tych KM; Pirrat P; Trinh CH; Pearson AR; Knowles PF; McPherson MJ
    Biochemistry; 2018 Sep; 57(36):5301-5314. PubMed ID: 30110143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amine oxidases of the quinoproteins family: their implication in the metabolic oxidation of xenobiotics.
    Largeron M
    Ann Pharm Fr; 2011 Jan; 69(1):53-61. PubMed ID: 21296218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of a strictly conserved, active-site residue alters substrate specificity and cofactor biogenesis in a copper amine oxidase.
    Hevel JM; Mills SA; Klinman JP
    Biochemistry; 1999 Mar; 38(12):3683-93. PubMed ID: 10090756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hydroxyquinone with amine oxidase activity: preparation and properties.
    Sanjust E; Rinaldi AC; Rescigno A; Porcu MC; Alberti G; Rinaldi A; Finazzi-Agrò A
    Biochem Biophys Res Commun; 1995 Mar; 208(2):825-34. PubMed ID: 7695641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system.
    Samec JS; Ell AH; Bäckvall JE
    Chemistry; 2005 Apr; 11(8):2327-34. PubMed ID: 15706621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and biogenesis of topaquinone and related cofactors.
    Dooley DM
    J Biol Inorg Chem; 1999 Feb; 4(1):1-11. PubMed ID: 10499097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of active site metal content in human diamine oxidase with trihydroxyphenylalanine quinone cofactor biogenesis .
    McGrath AP; Caradoc-Davies T; Collyer CA; Guss JM
    Biochemistry; 2010 Sep; 49(38):8316-24. PubMed ID: 20722416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unexpected formation of the spectroscopic Cu(I)-semiquinone radical by xenon-induced self-catalysis of a copper quinoprotein.
    Medda R; Mura A; Longu S; Anedda R; Padiglia A; Casu M; Floris G
    Biochimie; 2006 Jul; 88(7):827-35. PubMed ID: 16519984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.