These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 28474768)
1. A heteroscedastic generalized linear model with a non-normal speed factor for responses and response times. Molenaar D; Bolsinova M Br J Math Stat Psychol; 2017 May; 70(2):297-316. PubMed ID: 28474768 [TBL] [Abstract][Full Text] [Related]
2. A heteroscedastic hidden Markov mixture model for responses and categorized response times. Molenaar D; Rózsa S; Bolsinova M Behav Res Methods; 2019 Apr; 51(2):676-696. PubMed ID: 30924104 [TBL] [Abstract][Full Text] [Related]
3. The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions. Molenaar D; Dolan CV; de Boeck P Psychometrika; 2012 Jul; 77(3):455-78. PubMed ID: 27519776 [TBL] [Abstract][Full Text] [Related]
4. A comparison of methods to handle skew distributed cost variables in the analysis of the resource consumption in schizophrenia treatment. Kilian R; Matschinger H; Löeffler W; Roick C; Angermeyer MC J Ment Health Policy Econ; 2002 Mar; 5(1):21-31. PubMed ID: 12529567 [TBL] [Abstract][Full Text] [Related]
6. Testing and modelling non-normality within the one-factor model. Molenaar D; Dolan CV; Verhelst ND Br J Math Stat Psychol; 2010 May; 63(Pt 2):293-317. PubMed ID: 19796474 [TBL] [Abstract][Full Text] [Related]
7. A generalized linear factor model approach to the hierarchical framework for responses and response times. Molenaar D; Tuerlinckx F; van der Maas HL Br J Math Stat Psychol; 2015 May; 68(2):197-219. PubMed ID: 25109494 [TBL] [Abstract][Full Text] [Related]
8. Robustness of Parameter Estimation to Assumptions of Normality in the Multidimensional Graded Response Model. Wang C; Su S; Weiss DJ Multivariate Behav Res; 2018; 53(3):403-418. PubMed ID: 29624093 [TBL] [Abstract][Full Text] [Related]
9. Modelling Conditional Dependence Between Response Time and Accuracy. Bolsinova M; de Boeck P; Tijmstra J Psychometrika; 2017 Dec; 82(4):1126-1148. PubMed ID: 27738955 [TBL] [Abstract][Full Text] [Related]
10. A Bivariate Generalized Linear Item Response Theory Modeling Framework to the Analysis of Responses and Response Times. Molenaar D; Tuerlinckx F; van der Maas HL Multivariate Behav Res; 2015; 50(1):56-74. PubMed ID: 26609743 [TBL] [Abstract][Full Text] [Related]
11. Testing for interaction in two-way random and mixed effects models: the fully nonparametric approach. Gaugler T; Akritas MG Biometrics; 2011 Dec; 67(4):1314-20. PubMed ID: 21401567 [TBL] [Abstract][Full Text] [Related]
12. A Box-Cox normal model for response times. Klein Entink RH; van der Linden WJ; Fox JP Br J Math Stat Psychol; 2009 Nov; 62(Pt 3):621-40. PubMed ID: 19187574 [TBL] [Abstract][Full Text] [Related]
13. Hidden Markov Item Response Theory Models for Responses and Response Times. Molenaar D; Oberski D; Vermunt J; De Boeck P Multivariate Behav Res; 2016; 51(5):606-626. PubMed ID: 27712114 [TBL] [Abstract][Full Text] [Related]
14. A Generalized Speed-Accuracy Response Model for Dichotomous Items. van Rijn PW; Ali US Psychometrika; 2018 Mar; 83(1):109-131. PubMed ID: 29164449 [TBL] [Abstract][Full Text] [Related]
15. Is modelling dental caries a 'normal' thing to do? Lewsey JD; Gilthorpe MS; Bulman JS; Bedi R Community Dent Health; 2000 Dec; 17(4):212-7. PubMed ID: 11191194 [TBL] [Abstract][Full Text] [Related]
16. A semi-parametric within-subject mixture approach to the analyses of responses and response times. Molenaar D; Bolsinova M; Vermunt JK Br J Math Stat Psychol; 2018 May; 71(2):205-228. PubMed ID: 29044460 [TBL] [Abstract][Full Text] [Related]
17. Heteroscedasticity as a Basis of Direction Dependence in Reversible Linear Regression Models. Wiedermann W; Artner R; von Eye A Multivariate Behav Res; 2017; 52(2):222-241. PubMed ID: 28128999 [TBL] [Abstract][Full Text] [Related]
18. The linear transformation model with frailties for the analysis of item response times. Wang C; Chang HH; Douglas JA Br J Math Stat Psychol; 2013 Feb; 66(1):144-68. PubMed ID: 22506914 [TBL] [Abstract][Full Text] [Related]
19. Heteroscedastic one-factor models and marginal maximum likelihood estimation. Hessen DJ; Dolan CV Br J Math Stat Psychol; 2009 Feb; 62(Pt 1):57-77. PubMed ID: 17935662 [TBL] [Abstract][Full Text] [Related]
20. A comparison of item response models for accuracy and speed of item responses with applications to adaptive testing. van Rijn PW; Ali US Br J Math Stat Psychol; 2017 May; 70(2):317-345. PubMed ID: 28474769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]