These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 28474863)

  • 1. Freestanding Gold/Graphene-Oxide/Manganese Oxide Microsupercapacitor Displaying High Areal Energy Density.
    Morag A; Becker JY; Jelinek R
    ChemSusChem; 2017 Jul; 10(13):2736-2741. PubMed ID: 28474863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Pseudocapacitive Performance of MnO2 Nanowires on Recyclable Electrodes.
    Han ZJ; Bo Z; Seo DH; Pineda S; Wang Y; Yang HY; Ostrikov KK
    ChemSusChem; 2016 May; 9(9):1020-6. PubMed ID: 27059434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene oxide-dispersed pristine CNTs support for MnO2 nanorods as high performance supercapacitor electrodes.
    You B; Li N; Zhu H; Zhu X; Yang J
    ChemSusChem; 2013 Mar; 6(3):474-80. PubMed ID: 23417925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes.
    He Y; Chen W; Li X; Zhang Z; Fu J; Zhao C; Xie E
    ACS Nano; 2013 Jan; 7(1):174-82. PubMed ID: 23249211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices.
    Hu P; Yan M; Wang X; Han C; He L; Wei X; Niu C; Zhao K; Tian X; Wei Q; Li Z; Mai L
    Nano Lett; 2016 Mar; 16(3):1523-9. PubMed ID: 26882441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior lithium storage performance using sequentially stacked MnO2/reduced graphene oxide composite electrodes.
    Kim SJ; Yun YJ; Kim KW; Chae C; Jeong S; Kang Y; Choi SY; Lee SS; Choi S
    ChemSusChem; 2015 Apr; 8(8):1484-91. PubMed ID: 25845554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.
    Nolan H; Mendoza-Sanchez B; Ashok Kumar N; McEvoy N; O'Brien S; Nicolosi V; Duesberg GS
    Phys Chem Chem Phys; 2014 Feb; 16(6):2280-4. PubMed ID: 24418938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric Supercapacitors Based on Reduced Graphene Oxide with Different Polyoxometalates as Positive and Negative Electrodes.
    Dubal DP; Chodankar NR; Vinu A; Kim DH; Gomez-Romero P
    ChemSusChem; 2017 Jul; 10(13):2742-2750. PubMed ID: 28523755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode.
    Zhu G; He Z; Chen J; Zhao J; Feng X; Ma Y; Fan Q; Wang L; Huang W
    Nanoscale; 2014 Jan; 6(2):1079-85. PubMed ID: 24296659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode.
    Lei Z; Shi F; Lu L
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1058-64. PubMed ID: 22264121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors.
    Zhao X; Zhang L; Murali S; Stoller MD; Zhang Q; Zhu Y; Ruoff RS
    ACS Nano; 2012 Jun; 6(6):5404-12. PubMed ID: 22554307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interconnected 3 D Network of Graphene-Oxide Nanosheets Decorated with Carbon Dots for High-Performance Supercapacitors.
    Zhao X; Li M; Dong H; Liu Y; Hu H; Cai Y; Liang Y; Xiao Y; Zheng M
    ChemSusChem; 2017 Jun; 10(12):2626-2634. PubMed ID: 28440020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device.
    Sumboja A; Foo CY; Wang X; Lee PS
    Adv Mater; 2013 May; 25(20):2809-15. PubMed ID: 23580421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors.
    Chou TC; Doong RA; Hu CC; Zhang B; Su DS
    ChemSusChem; 2014 Mar; 7(3):841-7. PubMed ID: 24504702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors.
    Yu G; Hu L; Vosgueritchian M; Wang H; Xie X; McDonough JR; Cui X; Cui Y; Bao Z
    Nano Lett; 2011 Jul; 11(7):2905-11. PubMed ID: 21667923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly.
    Zhang J; Chen P; Oh BH; Chan-Park MB
    Nanoscale; 2013 Oct; 5(20):9860-6. PubMed ID: 23974163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WO3–x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors.
    Lu X; Zhai T; Zhang X; Shen Y; Yuan L; Hu B; Gong L; Chen J; Gao Y; Zhou J; Tong Y; Wang ZL
    Adv Mater; 2012 Feb; 24(7):938-44. PubMed ID: 22403832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MnO
    Youe WJ; Kim SJ; Lee SM; Chun SJ; Kang J; Kim YS
    Int J Biol Macromol; 2018 Jun; 112():943-950. PubMed ID: 29438754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.
    Lv Q; Wang S; Sun H; Luo J; Xiao J; Xiao J; Xiao F; Wang S
    Nano Lett; 2016 Jan; 16(1):40-7. PubMed ID: 26599168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.