These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 28475109)

  • 41. Scalable Synthesis of Pore-Rich Si/C@C Core-Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes.
    An W; He P; Che Z; Xiao C; Guo E; Pang C; He X; Ren J; Yuan G; Du N; Yang D; Peng DL; Zhang Q
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10308-10318. PubMed ID: 35175030
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Constructing Novel Si@SnO2 Core-Shell Heterostructures by Facile Self-Assembly of SnO2 Nanowires on Silicon Hollow Nanospheres for Large, Reversible Lithium Storage.
    Zhou ZW; Liu YT; Xie XM; Ye XY
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7092-100. PubMed ID: 26927734
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries.
    Cui LF; Yang Y; Hsu CM; Cui Y
    Nano Lett; 2009 Sep; 9(9):3370-4. PubMed ID: 19655765
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanospherical solid electrolyte interface layer formation in binder-free carbon nanotube aerogel/Si nanohybrids to provide lithium-ion battery anodes with a long-cycle life and high capacity.
    Shim HC; Kim I; Woo CS; Lee HJ; Hyun S
    Nanoscale; 2017 Apr; 9(14):4713-4720. PubMed ID: 28327775
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Membranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries.
    Zhao X; Du Y; Jin L; Yang Y; Wu S; Li W; Yu Y; Zhu Y; Zhang Q
    Sci Rep; 2015 Sep; 5():14146. PubMed ID: 26374601
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.
    Fan Y; Zhang Q; Lu C; Xiao Q; Wang X; Tay BK
    Nanoscale; 2013 Feb; 5(4):1503-6. PubMed ID: 23334522
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel approach for improving the performance of Si-based anodes in lithium-ion batteries.
    Sadeghipari M; Mashayekhi A; Mohajerzadeh S
    Nanotechnology; 2018 Feb; 29(5):055403. PubMed ID: 29231184
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-dimensional SnO₂@TiO₂ double-shell nanotubes on carbon cloth as a flexible anode for lithium-ion batteries.
    Zhang H; Ren W; Cheng C
    Nanotechnology; 2015 Jul; 26(27):274002. PubMed ID: 26082042
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hollow Core-Shell SnO2/C Fibers as Highly Stable Anodes for Lithium-Ion Batteries.
    Zhou D; Song WL; Fan LZ
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21472-8. PubMed ID: 26348195
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atomic-Scale Control of Silicon Expansion Space as Ultrastable Battery Anodes.
    Zhu J; Wang T; Fan F; Mei L; Lu B
    ACS Nano; 2016 Sep; 10(9):8243-51. PubMed ID: 27462725
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SnO
    Tran QN; Kim IT; Park S; Choi HW; Park SJ
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32679872
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Binder-Free Charantia-Like Metal-Oxide Core/Shell Nanotube Arrays for High-Performance Lithium-Ion Anodes.
    Xu P; Zhang Z; Zhang H; Shen A; Zhao Y; Zhou Y; Weng Y
    Front Chem; 2020; 8():159. PubMed ID: 32211381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries.
    Zhang Z; Wang ZL; Lu X
    ACS Nano; 2018 Apr; 12(4):3587-3599. PubMed ID: 29630825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-ion Battery Anode.
    Campbell B; Ionescu R; Tolchin M; Ahmed K; Favors Z; Bozhilov KN; Ozkan CS; Ozkan M
    Sci Rep; 2016 Oct; 6():33050. PubMed ID: 27713474
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanowire Heterostructures Comprising Germanium Stems and Silicon Branches as High-Capacity Li-Ion Anodes with Tunable Rate Capability.
    Kennedy T; Bezuidenhout M; Palaniappan K; Stokes K; Brandon M; Ryan KM
    ACS Nano; 2015 Jul; 9(7):7456-65. PubMed ID: 26125966
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hierarchical SnO2 /Carbon Nanofibrous Composite Derived from Cellulose Substance as Anode Material for Lithium-Ion Batteries.
    Wang M; Li S; Zhang Y; Huang J
    Chemistry; 2015 Nov; 21(45):16195-202. PubMed ID: 26397841
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries.
    Wang B; Ryu J; Choi S; Song G; Hong D; Hwang C; Chen X; Wang B; Li W; Song HK; Park S; Ruoff RS
    ACS Nano; 2018 Feb; 12(2):1739-1746. PubMed ID: 29350526
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A self-standing and flexible electrode of yolk-shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries.
    Qiu W; Jiao J; Xia J; Zhong H; Chen L
    Chemistry; 2015 Mar; 21(11):4359-67. PubMed ID: 25643650
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies.
    Zhou M; Li X; Wang B; Zhang Y; Ning J; Xiao Z; Zhang X; Chang Y; Zhi L
    Nano Lett; 2015 Sep; 15(9):6222-8. PubMed ID: 26308100
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CNT Sheet Air Electrode for the Development of Ultra-High Cell Capacity in Lithium-Air Batteries.
    Nomura A; Ito K; Kubo Y
    Sci Rep; 2017 Apr; 7():45596. PubMed ID: 28378746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.