BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 28475129)

  • 1. The Use of "Omics" in Lactation Research in Dairy Cows.
    Li S; Wang Q; Lin X; Jin X; Liu L; Wang C; Chen Q; Liu J; Liu H
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28475129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics and metabolomics characterizing the pathophysiology of adaptive reactions to the metabolic challenges during the transition from late pregnancy to early lactation in dairy cows.
    Ceciliani F; Lecchi C; Urh C; Sauerwein H
    J Proteomics; 2018 Apr; 178():92-106. PubMed ID: 29055723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mammary gland in domestic ruminants: a systems biology perspective.
    Ferreira AM; Bislev SL; Bendixen E; Almeida AM
    J Proteomics; 2013 Dec; 94():110-23. PubMed ID: 24076120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systems physiology in dairy cattle: nutritional genomics and beyond.
    Loor JJ; Bionaz M; Drackley JK
    Annu Rev Anim Biosci; 2013 Jan; 1():365-92. PubMed ID: 25387024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-omics study for interpretation of genome-wide association study.
    Akiyama M
    J Hum Genet; 2021 Jan; 66(1):3-10. PubMed ID: 32948838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Milk production and energy efficiency of Holstein and Jersey-Holstein crossbred dairy cows offered diets containing grass silage.
    Xue B; Yan T; Ferris CF; Mayne CS
    J Dairy Sci; 2011 Mar; 94(3):1455-64. PubMed ID: 21338810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic parameters for milk production traits and breeding goals for Gir dairy cattle in Brazil.
    Prata MA; Faro LE; Moreira HL; Verneque RS; Vercesi Filho AE; Peixoto MG; Cardoso VL
    Genet Mol Res; 2015 Oct; 14(4):12585-94. PubMed ID: 26505409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous lactation in dairy cows: effect on milk production and mammary nutrient supply and extraction.
    Madsen TG; Nielsen MO; Andersen JB; Ingvartsen KL
    J Dairy Sci; 2008 May; 91(5):1791-801. PubMed ID: 18420610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing milk solids production across lactation through genetic selection and intensive pasture-based feed system.
    Coleman J; Pierce KM; Berry DP; Brennan A; Horan B
    J Dairy Sci; 2010 Sep; 93(9):4302-17. PubMed ID: 20723704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of feed efficiency within and across lactation in dairy cows and the effect of genetic selection.
    Hurley AM; Lopez-Villalobos N; McParland S; Lewis E; Kennedy E; O'Donovan M; Burke JL; Berry DP
    J Dairy Sci; 2018 Feb; 101(2):1267-1280. PubMed ID: 29174146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear magnetic resonance and mass spectrometry-based milk metabolomics in dairy cows during early and late lactation.
    Klein MS; Almstetter MF; Schlamberger G; Nürnberger N; Dettmer K; Oefner PJ; Meyer HH; Wiedemann S; Gronwald W
    J Dairy Sci; 2010 Apr; 93(4):1539-50. PubMed ID: 20338431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic strain and diet effects on grazing behavior, pasture intake, and milk production.
    Sheahan AJ; Kolver ES; Roche JR
    J Dairy Sci; 2011 Jul; 94(7):3583-91. PubMed ID: 21700046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic selection for tolerance to heat stress in Australian dairy cattle.
    Nguyen TTT; Bowman PJ; Haile-Mariam M; Pryce JE; Hayes BJ
    J Dairy Sci; 2016 Apr; 99(4):2849-2862. PubMed ID: 27037467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calving traits, milk production, body condition, fertility, and survival of Holstein-Friesian and Norwegian Red dairy cattle on commercial dairy farms over 5 lactations.
    Ferris CP; Patterson DC; Gordon FJ; Watson S; Kilpatrick DJ
    J Dairy Sci; 2014; 97(8):5206-18. PubMed ID: 24952782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food intake, milk production, and tissue changes of Holstein-Friesian and Jersey × Holstein-Friesian dairy cows within a medium-input grazing system and a high-input total confinement system.
    Vance ER; Ferris CP; Elliott CT; McGettrick SA; Kilpatrick DJ
    J Dairy Sci; 2012 Mar; 95(3):1527-44. PubMed ID: 22365233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between genetic merit for yield and live weight, condition score, and energy balance of spring calving Holstein Friesian dairy cows on grass based systems of milk production.
    Buckley F; Dillon P; Rath M; Veerkamp RF
    J Dairy Sci; 2000 Aug; 83(8):1878-86. PubMed ID: 10984166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short communication: Genetic association of variations in the osteopontin gene (SPP1) with lactation persistency in dairy cattle.
    Bissonnette N
    J Dairy Sci; 2018 Jan; 101(1):456-461. PubMed ID: 29128221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Randomized controlled trial on impacts of dairy meal feeding interventions on early lactation milk production in smallholder dairy farms of Central Kenya.
    Richards S; VanLeeuwen JA; Shepelo G; Gitau GK; Wichtel J; Kamunde C; Uehlinger F
    Prev Vet Med; 2016 Mar; 125():46-53. PubMed ID: 26783201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and nongenetic variation in plasma and milk β-hydroxybutyrate and milk acetone concentrations of early-lactation dairy cows.
    van der Drift SG; van Hulzen KJ; Teweldemedhn TG; Jorritsma R; Nielen M; Heuven HC
    J Dairy Sci; 2012 Nov; 95(11):6781-7. PubMed ID: 22939798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between fertility and lactation characteristics in Holstein cows on United Kingdom commercial dairy farms.
    Albarrán-Portillo B; Pollott GE
    J Dairy Sci; 2013 Jan; 96(1):635-46. PubMed ID: 23141835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.