BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 28475210)

  • 21. Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.
    Kwak S; Kim SR; Xu H; Zhang GC; Lane S; Kim H; Jin YS
    Biotechnol Bioeng; 2017 Nov; 114(11):2581-2591. PubMed ID: 28667762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide identification of the targets for genetic manipulation to improve L-lactate production by Saccharomyces cerevisiae by using a single-gene deletion strain collection.
    Hirasawa T; Takekuni M; Yoshikawa K; Ookubo A; Furusawa C; Shimizu H
    J Biotechnol; 2013 Oct; 168(2):185-93. PubMed ID: 23665193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of Bacillus subtilis for production of D-lactic acid.
    Awasthi D; Wang L; Rhee MS; Wang Q; Chauliac D; Ingram LO; Shanmugam KT
    Biotechnol Bioeng; 2018 Feb; 115(2):453-463. PubMed ID: 28986980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene.
    Skory CD
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):22-7. PubMed ID: 12545382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae.
    Wang F; Lv X; Xie W; Zhou P; Zhu Y; Yao Z; Yang C; Yang X; Ye L; Yu H
    Metab Eng; 2017 Jan; 39():257-266. PubMed ID: 28034770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of a machine-learning model to predict the optimal gene expression level for efficient production of D-lactic acid in yeast.
    Yamamoto Y; Yamada R; Matsumoto T; Ogino H
    World J Microbiol Biotechnol; 2023 Jan; 39(3):69. PubMed ID: 36607503
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.
    Sugiyama M; Akase SP; Nakanishi R; Kaneko Y; Harashima S
    J Biosci Bioeng; 2016 Oct; 122(4):415-20. PubMed ID: 27102264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene.
    Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning.
    Latimer LN; Dueber JE
    Biotechnol Bioeng; 2017 Jun; 114(6):1301-1309. PubMed ID: 28165133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward the construction of a technology platform for chemicals production from methanol: D-lactic acid production from methanol by an engineered yeast Pichia pastoris.
    Yamada R; Ogura K; Kimoto Y; Ogino H
    World J Microbiol Biotechnol; 2019 Feb; 35(2):37. PubMed ID: 30715602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.
    Yu AQ; Pratomo Juwono NK; Foo JL; Leong SSJ; Chang MW
    Metab Eng; 2016 Mar; 34():36-43. PubMed ID: 26721212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient production of 2,3-butanediol by recombinant Saccharomyces cerevisiae through modulation of gene expression by cocktail δ-integration.
    Yamada R; Wakita K; Mitsui R; Nishikawa R; Ogino H
    Bioresour Technol; 2017 Dec; 245(Pt B):1558-1566. PubMed ID: 28522198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production.
    Ishida N; Saitoh S; Onishi T; Tokuhiro K; Nagamori E; Kitamoto K; Takahashi H
    Biosci Biotechnol Biochem; 2006 May; 70(5):1148-53. PubMed ID: 16717415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
    Zhang GC; Kong II; Wei N; Peng D; Turner TL; Sung BH; Sohn JH; Jin YS
    Biotechnol Bioeng; 2016 Dec; 113(12):2587-2596. PubMed ID: 27240865
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acid-tolerant Saccharomyces cerevisiae.
    Liu T; Sun L; Zhang C; Liu Y; Li J; Du G; Lv X; Liu L
    Bioresour Technol; 2023 Jul; 379():129023. PubMed ID: 37028528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved production of N-acetylglucosamine in Saccharomyces cerevisiae by reducing glycolytic flux.
    Lee SW; Oh MK
    Biotechnol Bioeng; 2016 Nov; 113(11):2524-8. PubMed ID: 27217143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone.
    Cardenas J; Da Silva NA
    Metab Eng; 2014 Sep; 25():194-203. PubMed ID: 25084369
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.
    Song JY; Park JS; Kang CD; Cho HY; Yang D; Lee S; Cho KM
    Metab Eng; 2016 May; 35():38-45. PubMed ID: 26384570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.
    Yuan J; Wu M; Lin J; Yang L
    BMC Biotechnol; 2016 May; 16(1):42. PubMed ID: 27189063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.