These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
466 related articles for article (PubMed ID: 28475307)
1. Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings. Buzzacchera I; Vorobii M; Kostina NY; de Los Santos Pereira A; Riedel T; Bruns M; Ogieglo W; Möller M; Wilson CJ; Rodriguez-Emmenegger C Biomacromolecules; 2017 Jun; 18(6):1983-1992. PubMed ID: 28475307 [TBL] [Abstract][Full Text] [Related]
2. Cell fouling resistance of polymer brushes grafted from ti substrates by surface-initiated polymerization: effect of ethylene glycol side chain length. Fan X; Lin L; Messersmith PB Biomacromolecules; 2006 Aug; 7(8):2443-8. PubMed ID: 16903694 [TBL] [Abstract][Full Text] [Related]
3. Anti-biofouling and functionalizable bioinspired chitosan-based hydrogel coating via surface photo-immobilization. Xv J; Li H; Zhang W; Lai G; Xue H; Zhao J; Tu M; Zeng R J Biomater Sci Polym Ed; 2019 Apr; 30(5):398-414. PubMed ID: 30688155 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical deposition and surface-initiated RAFT polymerization: protein and cell-resistant PPEGMEMA polymer brushes. Tria MC; Grande CD; Ponnapati RR; Advincula RC Biomacromolecules; 2010 Dec; 11(12):3422-31. PubMed ID: 21028799 [TBL] [Abstract][Full Text] [Related]
5. A hierarchical polymer brush coating with dual-function antibacterial capability. Yan S; Song L; Luan S; Xin Z; Du S; Shi H; Yuan S; Yang Y; Yin J Colloids Surf B Biointerfaces; 2017 Jan; 149():260-270. PubMed ID: 27770696 [TBL] [Abstract][Full Text] [Related]
6. Photografting and Patterning of Poly(ethylene glycol) Methacrylate Hydrogel on Glass for Biochip Applications. Cėpla V; Rakickas T; Stankevičienė G; Mazėtytė-Godienė A; Baradokė A; Ruželė Ž; Valiokas RN ACS Appl Mater Interfaces; 2020 Jul; 12(29):32233-32246. PubMed ID: 32438798 [TBL] [Abstract][Full Text] [Related]
7. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Jin X; Yuan J; Shen J Colloids Surf B Biointerfaces; 2016 Sep; 145():275-284. PubMed ID: 27208441 [TBL] [Abstract][Full Text] [Related]
8. Imparting antifouling properties of poly(2-hydroxyethyl methacrylate) hydrogels by grafting poly(oligoethylene glycol methyl ether acrylate). Bozukova D; Pagnoulle C; De Pauw-Gillet MC; Ruth N; Jérôme R; Jérôme C Langmuir; 2008 Jun; 24(13):6649-58. PubMed ID: 18503285 [TBL] [Abstract][Full Text] [Related]
9. Mechanical Properties and Concentrations of Poly(ethylene glycol) in Hydrogels and Brushes Direct the Surface Transport of Staphylococcus aureus. Kolewe KW; Kalasin S; Shave M; Schiffman JD; Santore MM ACS Appl Mater Interfaces; 2019 Jan; 11(1):320-330. PubMed ID: 30595023 [TBL] [Abstract][Full Text] [Related]
11. Mass-Spectrometric Identification of Proteins and Pathways Responsible for Fouling on Poly(ethylene glycol) Methacrylate Polymer Brushes. Riedelová Z; de Los Santos Pereira A; Dorado Daza DF; Májek P; Dyčka F; Riedel T Macromol Biosci; 2024 Jun; 24(6):e2300558. PubMed ID: 38350051 [TBL] [Abstract][Full Text] [Related]
12. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings. Xing CM; Meng FN; Quan M; Ding K; Dang Y; Gong YK Acta Biomater; 2017 Sep; 59():129-138. PubMed ID: 28663144 [TBL] [Abstract][Full Text] [Related]
13. On-demand bactericidal and self-adaptive antifouling hydrogels for self-healing and lubricant coatings of catheters. Ran P; Qiu B; Zheng H; Xie S; Zhang G; Cao W; Li X Acta Biomater; 2024 Sep; 186():215-228. PubMed ID: 39111681 [TBL] [Abstract][Full Text] [Related]
14. Peptide-functionalized poly[oligo(ethylene glycol) methacrylate] brushes on dopamine-coated stainless steel for controlled cell adhesion. Alas GR; Agarwal R; Collard DM; García AJ Acta Biomater; 2017 Sep; 59():108-116. PubMed ID: 28655657 [TBL] [Abstract][Full Text] [Related]
15. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces. Zhao C; Li L; Wang Q; Yu Q; Zheng J Langmuir; 2011 Apr; 27(8):4906-13. PubMed ID: 21405141 [TBL] [Abstract][Full Text] [Related]
16. Soft-sheath, stiff-core microfiber hydrogel for coating vascular implants. Boodagh P; Johnson R; Maly C; Ding Y; Tan W Colloids Surf B Biointerfaces; 2019 Nov; 183():110395. PubMed ID: 31386934 [TBL] [Abstract][Full Text] [Related]
17. Concentrated polymer brush-modified silica particle coating confers biofouling-resistance on modified materials. Yoshikawa C; Qiu J; Shimizu Y; Huang CF; Gelling OJ; van den Bosch E Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):272-277. PubMed ID: 27770891 [TBL] [Abstract][Full Text] [Related]
18. Electropolymerized hydrophilic coating on stainless steel for biomedical applications. Trzaskowska PA; Kuźmińska A; Butruk-Raszeja B; Rybak E; Ciach T Colloids Surf B Biointerfaces; 2018 Jul; 167():499-508. PubMed ID: 29729627 [TBL] [Abstract][Full Text] [Related]
19. Functionalized PEG hydrogels through reactive dip-coating for the formation of immunoactive barriers. Hume PS; Bowman CN; Anseth KS Biomaterials; 2011 Sep; 32(26):6204-12. PubMed ID: 21658759 [TBL] [Abstract][Full Text] [Related]
20. Polymer brushes interfacing blood as a route toward high performance blood contacting devices. Surman F; Riedel T; Bruns M; Kostina NY; Sedláková Z; Rodriguez-Emmenegger C Macromol Biosci; 2015 May; 15(5):636-46. PubMed ID: 25644402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]