These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28475332)

  • 1. The Roles of Water in the Protein Matrix: A Largely Untapped Resource for Drug Discovery.
    Spyrakis F; Ahmed MH; Bayden AS; Cozzini P; Mozzarelli A; Kellogg GE
    J Med Chem; 2017 Aug; 60(16):6781-6827. PubMed ID: 28475332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydration properties of ligands and drugs in protein binding sites: tightly-bound, bridging water molecules and their effects and consequences on molecular design strategies.
    García-Sosa AT
    J Chem Inf Model; 2013 Jun; 53(6):1388-405. PubMed ID: 23662606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculating Water Thermodynamics in the Binding Site of Proteins - Applications of WaterMap to Drug Discovery.
    Cappel D; Sherman W; Beuming T
    Curr Top Med Chem; 2017; 17(23):2586-2598. PubMed ID: 28413953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular modeling of hydration in drug design.
    Mancera RL
    Curr Opin Drug Discov Devel; 2007 May; 10(3):275-80. PubMed ID: 17554853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules.
    Amadasi A; Spyrakis F; Cozzini P; Abraham DJ; Kellogg GE; Mozzarelli A
    J Mol Biol; 2006 Apr; 358(1):289-309. PubMed ID: 16497327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water molecules at protein-drug interfaces: computational prediction and analysis methods.
    Samways ML; Taylor RD; Bruce Macdonald HE; Essex JW
    Chem Soc Rev; 2021 Aug; 50(16):9104-9120. PubMed ID: 34184009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of hydration thermodynamics in fragment-to-lead optimization.
    Ichihara O; Shimada Y; Yoshidome D
    ChemMedChem; 2014 Dec; 9(12):2708-17. PubMed ID: 25164952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of water molecules in computational drug design.
    de Beer SB; Vermeulen NP; Oostenbrink C
    Curr Top Med Chem; 2010; 10(1):55-66. PubMed ID: 19929830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accounting for solvent in structure-based drug design.
    Tari LW
    Methods Mol Biol; 2012; 841():251-66. PubMed ID: 22222456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand binding stepwise disrupts water network in thrombin: enthalpic and entropic changes reveal classical hydrophobic effect.
    Biela A; Sielaff F; Terwesten F; Heine A; Steinmetzer T; Klebe G
    J Med Chem; 2012 Jul; 55(13):6094-110. PubMed ID: 22612268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.
    Meanwell NA
    Chem Res Toxicol; 2011 Sep; 24(9):1420-56. PubMed ID: 21790149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug-DNA recognition: energetics and implications for design.
    Haq I; Ladbury J
    J Mol Recognit; 2000; 13(4):188-97. PubMed ID: 10931556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating Free Energies of Binding and Conservation of Crystallographic Waters Using SZMAP.
    Bayden AS; Moustakas DT; Joseph-McCarthy D; Lamb ML
    J Chem Inf Model; 2015 Aug; 55(8):1552-65. PubMed ID: 26176600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Standard free energy of releasing a localized water molecule from the binding pockets of proteins: double-decoupling method.
    Hamelberg D; McCammon JA
    J Am Chem Soc; 2004 Jun; 126(24):7683-9. PubMed ID: 15198616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Perspective on Water Site Prediction Methods for Structure Based Drug Design.
    Graves AP; Wall ID; Edge CM; Woolven JM; Cui G; Le Gall A; Hong X; Raha K; Manas ES
    Curr Top Med Chem; 2017; 17(23):2599-2616. PubMed ID: 28460610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water mediation in protein folding and molecular recognition.
    Levy Y; Onuchic JN
    Annu Rev Biophys Biomol Struct; 2006; 35():389-415. PubMed ID: 16689642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies.
    Deganutti G; Moro S
    Future Med Chem; 2017 Apr; 9(5):507-523. PubMed ID: 28362130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding site detection and druggability index from first principles.
    Seco J; Luque FJ; Barril X
    J Med Chem; 2009 Apr; 52(8):2363-71. PubMed ID: 19296650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The utility of structural biology in drug discovery.
    Tari LW
    Methods Mol Biol; 2012; 841():1-27. PubMed ID: 22222446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.